Supplemental Material for Baldwin and Scragg, Algorithms and Data Structures: The Science of Computing; Charles River Media, 2004
OrderedTree
class defined for Algorithms
and Data Structures: The Science of Computing.
Understanding of sections 13.1 through 13.4 of Algorithms and Data Structures: The Science of Computing.
Understanding of asymptotic notation, as described in section 9.2 of Algorithms and Data Structures: The Science of Computing.
Binary trees are defined in sections 13.1 and 13.2 of Algorithms and Data Structures: The Science of Computing. Ordered binary trees are defined in section 13.3. The notion of a “fully balanced” tree is defined in section 13.3.5.
Algorithms and Data Structures: The Science of Computing describes a class that represents ordered binary trees. A complete implementation of this class is available, in a file named OrderedTree.java. The “Final Details” section of this document explains where to find this file.
Any Java source file that uses the OrderedTree
class should “import” it
via a statement of the form
import geneseo.cs.sc.OrderedTree;
Subclasses of OrderedTree
are subtle in several ways. These subtleties
generally parallel those of recursive lists, discussed in section 11.5.1 of Algorithms
and Data Structures: The Science of Computing. For this lab, pay
particular attention to the makeNewTree
method,
and to the need for casts when using the getLeft
and getRight
messages
to extract subtrees that will receive recursive messages.
Design and analyze a subclass of OrderedTree
that includes the
methods described below. Specifically, do the following for each method:
Finally, write in Java a subclass of OrderedTree
that includes
all of the methods. Write a main program that tests this subclass (trees of
strings
are good things to test the subclass with, since strings are objects that are
easy to create and that can be stored in ordered trees).
Design a method that counts the elements in a binary tree. Specifically, the method takes no parameters, and returns an integer equal to the number of elements in the tree.
Design a method that returns the largest element in an ordered binary tree.
This method has no parameters, and returns a Comparable
object.
Do two analyses of worst-case execution time for this algorithm: One analysis that assumes that the tree is fully balanced, and one that allows the tree to be arbitrarily imbalanced.
File OrderedTree.java can be Downloaded from the World Wide Web.
Documentation for the OrderedTree
class
is also available on the Web. The main documentation page is an index to documentation
for all the Java classes written for use with Algorithms and Data Structures:
The Science of Computing. To see the documentation for a specific class,
click on that class’s name in the left-hand panel of the page.
This lab is due on Tuesday, November 30. Turn in a printout of the code you write, and the correctness proofs and execution time derivations for each method. The proofs and derivations may be comments in your code, or they may be on a separate sheet of paper.
In addition to your code, proofs, and derivations, turn in a short paragraph discussing the extent to which concepts you learned about lists also apply to binary trees. You might discuss either or both of …
List
and OrderedTree
classes
that allow programming skills learned in connection with one to be applied
to the otheror other observations you have about the similarities (or lack thereof) between the two data structures.
Portions copyright © 2004. Charles River Media. All rights reserved.
Revised Nov. 18, 2004