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Abstract— The main contribution of this paper are two new
general necessary conditions for controllability of multi-agent
networked control systems involving almost equitable parti-
tions, along with an extension of a well-known symmetry con-
dition to weighted digraphs and multi-input broadcast control
signals. The new necessary conditions identify leader selections
that break all “symmetries” induced by an almost equitable
partition, and in particular genuine graph symmetries, but yet
induce uncontrollable dynamics. The results are illustrated on
non-trivial examples whose controllability properties are fully
characterized by these conditions.

I. INTRODUCTION

Equitable partitions have been used recently to provide

necessary conditions for controllability of multi-agent net-

worked control systems with multiple inputs [15], analyze

the controllability of single-input multi-agent systems [10],

obtain upper and lower bounds for the controllable subspace

once the control nodes are selected [18], study model-

reduction [13], and obtain sufficient conditions for the dis-

turbance decoupling problem [12], [14]. Equitable partitions

play an important role in studying spectral properties of the

adjacency matrix, see for example [8, Section 9.3], and the

more general notion of almost equitable partitions reveal

spectral properties of the Laplacian matrix [3]. Equitable

partitions appear also in the study of synchrony and pattern

formation in coupled cell networks [16], [9], although in that

setting they are referred to as “balanced” partitions.

In this paper, we consider weighted digraphs and the effect

of almost equitable partitions on the controllability properties

of the out-degree Laplacian matrix. Our main objective is to

study the so-called leader-selection controllability problem

and in characterizing the set of nodes from which a given

networked control system is controllable/uncontrollable; we

focus on the class of Laplacian leader-follower control sys-

tems [17], [15], [4], [2], although our results are applicable

to alternative graph matrices (e.g., adjacency, normalized

Laplacian, etc.). Our results allow us to go beyond the un-

controllable pairs that can be identified using symmetries of

the graph, as in [17], [15], [4]. The key property of (almost)

equitable partitions is that they induce invariant subspaces

of the graph matrix, which therefore impose constraints on

the leader-selection controllability problem for a networked

multi-agent system. This work includes parts of our recent
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results in [1], extended here to the class of weighted digraphs

with normal Laplacian matrix. The proofs are omitted for

reasons of space and will appear elsewhere.

Statement of Contributions

The main results of this paper are new general necessary

conditions for controllability of the leader-follower Laplacian

dynamics using the information on the eigenvectors of the

Laplacian matrix provided by almost equitable partitions.

Specifically, our first result (Theorem 5.1) generalizes the

relationship between graph symmetries and uncontrollability

to the multi-input, multi-broadcast, and weighted digraph

case [15]. More importantly, we provide two new necessary

controllability conditions (Theorem 5.2 and 5.3) character-

izing uncontrollable leader-selections that break the inherent

“symmetry” of an almost equitable partition. These latter

results show that the existence of almost equitable partitions

can induce uncontrollability in complicated ways. As a by

product of our results, we derive useful properties of almost

equitable partitions of quotient graphs that are of independent

interest. Examples are chosen to illustrate the results.

II. PRELIMINARIES

Throughout this paper, the standard basis vectors in R
n

are denoted by e1, e2, . . . , en. The orthogonal complement

of a set S ⊂ Rn under the standard inner product on Rn

will be denoted by S⊥. The transpose of a real matrix M is

denoted MT and the conjugate transpose denoted by M∗ if

M has complex entries. The n×n identity matrix is denoted

by In. The column space of a matrix M will be denoted by

img(M).

The set of binary vectors of length n will be denoted

by {0, 1}n. Let b ∈ {0, 1}n. We denote by χ(b) the

characteristic indices of b, i.e., χ(b) ⊆ {1, 2, . . . , n} is the

set of indices where b is non-zero. Conversely, given any

set C ⊆ {1, 2, . . . , n} the characteristic vector c ∈ {0, 1}n

of C satisfies χ(c) = C. The all ones vector in {0, 1}n is

denoted by 1n and the all zeros vector is denoted by 0n.

We recall some facts from linear algebra [6]. Let V be an

inner product space and let T : V → V be a diagonalizable

linear operator. If W is a T-invariant subspace then the

restriction of T to W, denoted by T|W, is also diagonalizable.

Hence, there exists a basis {v1, v2, . . . , vk} for W that are

eigenvectors of T|W. The eigenvectors v1, v2, . . . , vk are

naturally eigenvectors of T, and thus there exists a basis

for W consisting of eigenvectors of T. Now, since W is T-

invariant, the orthogonal complement W
⊥ is T

∗-invariant,
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where T
∗ denotes the adjoint of T. If T is self-adjoint then

W
⊥ is also T-invariant. Hence, in this case there also exists

a basis for W
⊥ consisting of eigenvectors of T. Hence, in

this case, the eigenvectors of T split into those contained in

W and those contained in W
⊥.

We say that T is a normal linear operator if TT∗ = T
∗
T.

It is known that if T is normal then T and T
∗ have the same

eigenvectors. We note that self-adjoint operators are special

cases of normal operators.

III. PROBLEM STATEMENT

To state the main problem under study in this paper, we

need some notions from graph theory. Let G be a direct

graph, or digraph. The vertex set of G is denoted by V =
V (G) and its edge set is denoted by E = E(G) ⊆ V ×V . For

simplicity, we assume throughout that V = {1, 2, . . . , n}.

The weight of the edge (i, j) ∈ E will be denoted by aij ,

and if (i, j) /∈ E we set aij = 0. We consider graphs that

contain no self-loops, i.e., aii = 0, for all i. A path in G is

an ordered sequence of vertices such that any ordered pair

of vertices appearing consecutively is an edge of G. We say

that G is strongly connected if there is a path between any

pair of distinct vertices, and this is a standing assumption

throughout this paper.

Let G1 and G2 be two graphs with the same vertex set

V . We say that G1 is the complement of G2 on V if two

vertices in G1 are adjacent if and only if they are not in

G2. A graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G)
is called a subgraph of G. For a subset S ⊂ V (G), the

subgraph induced by S is the subgraph of G with vertex set

S and whose edges consist of all edges in G with vertices

in S.

The out-neighbors of i ∈ V is the set Nout(i) := {j ∈
V | (i, j) ∈ E} and the out-degree of i is

dout(i) =
∑

j∈Nout(i)

aij =
∑

j∈V

aij .

The out-adjacency matrix of G is the n × n matrix A

defined as (A)ij = aij . The out degree matrix of G is

the n × n diagonal matrix D defined by (D)ii = dout(i).
The out-Laplacian matrix of G is the n× n matrix defined

by L = D − A. Since G is strongly connected, it is well-

known that λ = 0 is a simple eigenvalue of L affording

the eigenvector 1n := (1, 1, . . . , 1) ∈ Rn. Henceforth, by

adjacency and Laplacian matrix we mean the out-adjacency

and out-Laplacian matrix. The in-neighbors, in-degree, in-

adjacency, and in-Laplacian matrix are defined similarly. A

digraph is called regular if the in-degree and out-degree of

each vertex are equal.

A permutation σ of the vertex set V = {1, 2, . . . , n} is an

automorphism of G if (i, j) ∈ E if and only if (σ(i), σ(j)) ∈
E. The group of automorphisms of G will be denoted by

Γ = Aut(G). We say that G is asymmetric if Γ contains only

the identity permutation, and is called symmetric otherwise.

If Pσ denotes the permutation matrix associated to σ then

it is well-known that σ ∈ Γ if and only if APσ = PσA

(equivalently, LPσ = PσL since σ must preserve degrees).

A. The Leader-Selection Controllability Problem

Let L be the Laplacian matrix of a weighted digraph G on

n vertices. The leader-selection controllability problem for L

with m ≥ 1 inputs is to find a matrix B ∈ {0, 1}n×m such

that the linear control system

ẋ = −Lx+Bu (1)

is controllable. It is well-known that the pair (L,B)
is controllable if and only if the smallest L-invariant

subspace containing img(B), denoted by 〈L;B〉 :=
img([B LB · · · Ln−1B]), is all of Rn. An equivalent

characterization of controllability is the Popov-Belevitch-

Hautus (PBH) test [5].

Theorem 3.1: The pair (L,B) is uncontrollable if and

only if there exists an eigenvector w ∈ Cn of LT such that

w∗B = 01×m.

In this paper, we are interested in obtaining graph-theoretic

conditions on the choices of B that lead to control-

lable/uncontrollable pairs (L,B). When B is a column vec-

tor, we write b instead of B, and this amounts to considering

the case of a broadcasted control signal at the nodes specified

by χ(b).

IV. ALMOST EQUITABLE PARTITIONS OF WEIGHTED

DIGRAPHS

Let G be a weighted digraph with adjacency matrix A =
(aij). Given a subset C ⊆ V , we denote for each i ∈ V the

out-degree of i relative to C by

dout(i, C) =
∑

j∈C

aij .

Let π = {C1, C2, . . . , Ck} be a partition of the vertex set

V , that is,
⋃k

i=1 Ci = V and Ci ∩ Cj = ∅ for i 6= j.

Following [3], we say that π is an almost equitable partition

(AEP) of G if for all distinct ordered pairs of cells (Cr, Cs)
it holds that dout(i, Cs) is independent of i ∈ Cr. In this

case, we denote by αrs := dout(i, Cs) for any i ∈ Cr. We

note that, in general, αrs 6= αsr . We define αrr = 0 for

all r = 1, 2, . . . , k. The characteristic matrix of π is the

n × k matrix P(π) whose jth column is the characteristic

vector of the cell Cj . Clearly, img(P(π)) is a k-dimensional

subspace consisting of vectors that are constant on the cells

C1, . . . , Ck, that is, if x ∈ img(P(π)) then for each Ci the

components of x on Ci are equal. When π is understood,

we will write P instead of P(π).

Remark 4.1: (Equitable partition): An almost equitable

partition is called an equitable partition if the subgraph

induced by each cell is a regular graph [8]. It is a straight-

forward exercise to show that if σ is an automorphism of

G, then the vertex partition induced by the orbits of σ is an

equitable partition of G. •

180



Given an almost equitable partition π of G, we define

the out-neighbor quotient graph of G over π, denoted by

G/π, as the weighted digraph with vertices V (G/π) =
{C1, C2, . . . , Ck}, edge set E(G/π) = {(Cr, Cs) | αrs 6=
0}, and the weight of (Cr , Cs) ∈ E(G/π) is αrs. We let Aπ

and Lπ denote the out-adjacency and out-Laplacian matrix

of G/π, respectively. In particular, for r 6= s, we have that

(Lπ)r,s = −αr,s, and

(Lπ)r,r = dout(r) =
∑

Cs∈V (G/π)

αr,s.

Remark 4.2: (The case of symmetric digraphs): We can

naturally associate to a simple graph G an edge symmetric

digraph, i.e., a digraph where there is an edge between i and

j if and only if there is an edge between j and i, whose

weights are all unity. In this case, the definitions of G/π,

Aπ, and Lπ coincide with those in [3]. •

The following theorem describes one way in which L-

invariant subspaces arise with respect to an almost equitable

partition. The proof of the following is similar to [3], [12]

and thus we omit it.

Theorem 4.1: (Characterization of AEP for weighted

digraphs): Let G = (V,E) be a weighted digraph with out-

Laplacian matrix L, let π = {C1, C2, . . . , Ck} be a partition

of V , and let P be the characteristic matrix of π. Then π is

an almost equitable partition of G if and only if img(P) is

L-invariant, that is, there exists a k × k matrix Q such that

LP = PQ.

In this case, Q = Lπ = (PTP)−1PTLP.

Hence, when π is an almost equitable partition, Lπ is the

matrix representation of the restriction of L to the subspace

W = img(P(π)) in the basis obtained from the columns of

P(π). Thus, if β1 = {c1, . . . , ck} consists of the columns of

P(π) and we extend β1 to a basis β = β1 ∪ β2 of Rn then

the matrix L in the basis β takes the form

[L]β =

[

Lπ L12

0 L22

]

.

We note that, even if L is symmetric, Lπ is not generally

symmetric, since β1 is not an orthonormal basis of W.

However, L|W is indeed self-adjoint. In any case, every

eigenvector of L|W is naturally an eigenvector of L, which

leads to the following result.

Proposition 4.1: (Spectrum of the restricted Lapla-

cian): Let G, L, Lπ, and P be as in Theorem 4.1. Then

(v, λ) is an eigenvector-eigenvalue pair of Lπ if and only if

(Pv, λ) is an eigenvector-eigenvalue pair of L.

The following useful result describes how AEPs of the

quotient graph induce AEPs of the original graph.

Theorem 4.2: (AEPs of the quotient graph): Let G be

a weighted digraph and suppose that π = {C1, C2, . . . , Ck}
is an AEP of G. Suppose that ρ = {S1, S2, . . . , Sℓ} is an

AEP of the quotient graph G/π. Define the partition π/ρ =

{C1, C2, . . . , Cℓ} of V (G) by asking that Cj =
⋃

Ci∈Sj
Ci

for j = 1, 2, . . . , ℓ. Then π/ρ is an almost equitable partition

of G.

In Theorem 4.2, the partition π/ρ is a coarsening of

the partition π. In fact, in terms of invariant subspaces,

Theorem 4.2 follows from the general fact that for a linear

operator T : V → V, if W1 is T-invariant and W2 ⊂ W1

is T|W1
-invariant, then W2 is T-invariant, where we have

naturally identified W2 with a subspace of V. In Theorem 4.2,

W1 = img(P(π)), W2 = img(P(ρ)), and T = L. We

illustrate Theorem 4.2 with an example that will be used

throughout the paper.

Example 4.1: Let G be the unweighted and undirected

graph shown in Figure 1. The automorphism group Γ =
Aut(G), as computed by NAUTY [11], is generated by the

transpositions τ1 = (2 3), τ2 = (7 8), τ3 = (1 6), and

τ4 = (4 5). The automorphism π = τ1τ2τ3τ4 induces an

equitable partition of the vertex set V (G) whose cells are

C1 = {2, 3}, C2 = {7, 8}, C3 = {1, 6}, C4 = {4, 5},

C5 = {9}, and C6 = {10}. For convenience, we denote

the induced partition by π = {C1, C2, C3, C4, C5, C6}. The

quotient graph G/π is shown in Figure 2, where the weights

shown on the edges correspond to the out-degree of the

nodes. It can be verified that ρ = {{3, 4}, {5, 6}, {1}, {2}} is

an equitable partition of G/π induced by the automorphism

ρ = (3 4)(5 6) of G/π. The quotient graph (G/π)/ρ is

displayed in Figure 3. The partition π/ρ is therefore

π/ρ = {{2, 3}, {7, 8}, {9, 10}, {1, 6, 4, 5}},

and it can be verified that π/ρ is an almost equitable partition

of G but not an equitable partition. Hence, although π and ρ
are equitable partitions, π/ρ may in general be only almost

equitable. •

V. CONTROLLABILITY AND ALMOST EQUITABLE

PARTITIONS

Suppose that π is an almost equitable partition of G. Then,

since img(P) is L-invariant, it follows that img(P)⊥ =
ker(PT ) is LT -invariant. For simplicity, if we assume that

G is undirected, then L is a symmetric matrix and hence

ker(PT ) is also L-invariant. From the direct sum decompo-

sition Rn = img(P)⊕ ker(PT ), we may therefore partition

the eigenvectors of L into those that are constant on the cells

of π, i.e., are contained in img(P), and those that sum to

zero on the cells of π, i.e., are contained in ker(PT ). For

the leader-selection controllability problem, this implies that

when the leader nodes are selected so that the resulting con-

trol input matrix has columns that are constant on the cells of

π, these columns will be orthogonal to every eigenvector of

L in ker(PT ). We formalize our preceding discussion with

the following theorem.

Theorem 5.1: (A necessary condition for controllabil-

ity: constant on the cells): Let G be a weighted digraph on

n ≥ 2 vertices and suppose that π = {C1, C2, . . . , Ck} is an

almost equitable partition of G. Assume that b1, . . . ,bm ∈
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Fig. 1: G Fig. 2: G/π Fig. 3: (G/π)/ρ

{0, 1}n are constant on the cells C1, C2, . . . , Ck and let

B =
[

b1 b2 · · · bm

]

. Then 〈L;B〉 ⊆ img(P) and

therefore dim〈L,B〉 ≤ k. In particular, if k < n then (L,B)
is uncontrollable.

Remark 5.1: (Comparison with [18]): The result in [18,

Thm. 2] is a special case of Theorem 5.1, since there B =
[

ei1 · · · eim
]

and the first m cells of π are Cj = {ij},

where 1 ≤ j ≤ m, so that Theorem 5.1 is applicable.

Moreover, if L is symmetric and π is an almost equitable

partition, ker(PT ) has a basis of (real) eigenvectors of L,

all of which are orthogonal to B. •

Theorem 5.1 contains as a special case the situation of

leader-symmetric selections, which we now define.

Definition 5.1: Let G be a weighted digraph. We say that

B ∈ {0, 1}n×m is leader-symmetric if there exists a non-

trivial automorphism σ ∈ Aut(G) such that img(B) ⊆
img(P(σ)), that is, the columns of B are constant on the

cells of σ. If B is not leader-symmetric we say that it is

leader-asymmetric.

The following is an immediate corollary to Theorem 5.1.

Corollary 5.1: (Leader symmetry): Let G be a weighted

digraph on n ≥ 2 vertices. If B ∈ {0, 1}n×m is leader-

symmetric then (L,B) is an uncontrollable pair.

Remark 5.2: (Comparison with [4]): Proposition IV.8 in

[4] is a special case of Corollary 5.1. Indeed, in [4], we have

B =
[

ei1 · · · eim
]

and leader-symmetry amounts to the

existence of a non-trivial automorphism σ such that σ(ij) =
ij for all j = 1, . . . ,m. In this case, the equitable partition

induced by σ contains the cells {i1}, {i2}, . . . , {im}, so that

B is constant on the cells of σ. •

It is well-known that leader-symmetry is not necessary for

uncontrollability [15], and thus it is natural to ask if the more

general notion of AEPs, and in particular Theorem 5.1, is

necessary for uncontrollability. In other words, we are inter-

ested in the case of img(B) not contained in img(P(π)) but

(L,B) is uncontrollable. These binary vectors can therefore

be thought of as “breaking the symmetry induced by π”. To

answer this question, we consider graphs on n = 6 vertices,

since this is the minimal order for obtaining an asymmetric

graph and graph symmetries induce equitable partitions. Of

the eight asymmetric graphs on n = 6 vertices, the only

four that have simple eigenvalues and contain uncontrollable

leader selections are shown in Figure 4 (the other four

are essentially controllable, see [2]). Graphs (a) and (b),

and similarly graphs (c) and (d), are graph complements

up to a relabeling of the vertices. Consequently, each pair

has the same eigenvectors and thus the same controllability

properties. Graphs (a) and (b) contain no AEPs, while graphs

(c) and (d) contain only the AEPs π1 = {{5, 6}, {1, 2, 3, 4}}
and π2 = {{2, 5}, {1, 3, 4, 6}}, respectively. However, even

for the graphs (c) and (d) with AEPs, there are uncontrollable

binary vectors b that are not constant on the cells of the

respective partition, i.e., they are not characterized by Theo-

rem 5.1. To see how these uncontrollable binary vectors arise,

consider the equitable partition π1 = {{5, 6}, {1, 2, 3, 4}}=:
{C1, C2} of the graph in Figure 4(c). By Theorem 5.1, the

binary vector b = e5+e6, and its binary complement, yield

uncontrollable dynamics. Let w 6= 1n be an eigenvector of L

contained in img(P(π1)). Hence, w = α1c1 + α2c2, where

αj ∈ R and cj is the characteristic vector of the cell Cj , for

j = 1, 2. From wT1n = 0, it follows that 2α1 + 4α2 = 0,

or equivalently that α1 + 2α2 = 0. The reduced relation

α1 + 2α2 = 0 induces new uncontrollable binary vectors

not contained in img(P(π1)) as follows. From the cell

C1 = {5, 6} we choose one non-zero component for b and

from the cell C2 = {1, 2, 3, 4} we choose two non-zero

components for b. By construction, b is not in img(P(π1)),
and clearly wTb = α1 + 2α2 = 0, that is, (L,b) is

uncontrollable. There are
(

2
1

)(

4
2

)

= 12 such choices for b,

and with the 2 uncontrollable binary vectors in img(P(π1))
characterized by Theorem 5.1, this yields 14 non-trivial

uncontrollable binary vectors. It can be verified that this

completely characterizes all the uncontrollable binary vectors

for the graph in Figure 4(c), and consequently for Figure 4(d)

also. To formalize our previous discussion, we introduce the

following definition.

Definition 5.2: Let G be a graph and let π =
{C1, C2, . . . , Ck} be a partition of the vertices of G. We

define

gcd(π) = gcd(|C1|, |C2|, . . . , |Ck|)

and we say that π is reducible if gcd(π) ≥ 2.

With this definition we have the following theorem.

Theorem 5.2: (A necessary condition for controllabil-
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(a) (b) (c) (d)

Fig. 4: (a), (b) Conditionally controllable graphs with no AEPs, (c), (d) Conditionally controllable graphs with AEPs

ity: symmetry-breaking leaders): Let G be a weighted

digraph with normal Laplacian matrix L. Let π =
{C1, C2, . . . , Ck} be a reducible AEP of G, where k ≥ 2,

and let

qj =
|Cj |

gcd(π)

for j = 1, 2, . . . , k. Let d ∈ {1, . . . , gcd(π) − 1} and let b

be such that |χ(b)∩Cj | = dqj , for all j = 1, 2, . . . , k. Then

(L,b) is uncontrollable. In particular, there are

gcd(π)−1
∑

d=1

k
∏

j=1

(

|Cj |

dqj

)

such choices for b.

We illustrate the use of Theorem 5.2 on the asymmetric

3-regular Frucht graph [7].

Example 5.1: Consider the asymmetric 3-regular Frucht

graph on n = 12 vertices shown in Figure 5. We compute

that the only non-trivial equitable partitions of the Frucht

graph are

π1 = {{3, 7, 10}, {1, 2, 4, 5, 6, 8, 9, 11, 12}}

π2 = {{1, 5, 7, 12}, {3, 6, 9, 11}, {2, 4, 8, 10}}

π3 = {{1, 5, 7, 12}, {2, 3, 4, 6, 8, 9, 10, 11}}.

We note that, since the Frucht graph is a regular graph,

almost equitable partitions are automatically equitable parti-

tions. In any case, consider the partition π1 = {C1, C2}, with

gcd(π1) = 3. There are two non-trivial binary vectors that

are constant on the cells of π1 and these are uncontrollable

by Theorem 5.1. Let w 6= 1n be an eigenvector of L

contained in img(P(π1)). Then w = α1c1 + α2c2, where

cj is the characteristic vector of the cell Cj and αj ∈ R, for

j = 1, 2. From wT1n = 0, we have that 3α1 + 9α2 = 0,

or equivalently that α1 + 3α2 = 0. Hence, if b is such that

|χ(b)∩C1| = d and |χ(b)∩C2| = 3d, where d ∈ {1, 2} then

wTb = dα1 + 3dα2 = 0. There are
(

3
1

)(

9
3

)

+
(

3
2

)(

9
6

)

= 504
such uncontrollable binary vectors. Hence, there are a total

of 506 uncontrollable leader-selections corresponding to π1.

Consider now the partition π2 = {C1, C2, C3}, with

gcd(π2) = 4. There are 23 − 2 = 6 non-trivial binary

vectors in img(P(π2)) and these are uncontrollable by

Theorem 5.1. Let w 6= 1n be an eigenvector of L contained

Fig. 5: Frucht graph

in img(P(π2)). Then, w = α1c1 + α2c2 + α3c3, where cj
is the characteristic vector of Cj . Since wT1n = 0 we have

that 4α1+4α2+4α3 = 0, or equivalently α1+α2+α3 = 0.

Let b be such that |χ(b) ∩ Cj | = d for j = 1, 2, 3 where

d ∈ {1, 2, 3}. Then wTb = dα1 + dα2 + dα3 = 0. There

are
(

4
1

)3
+

(

4
2

)3
+

(

4
3

)3
= 344 such choices for b. Hence,

there are 350 uncontrollable leader-selections corresponding

to π2.

Lastly, consider π3 = {C1, C2}, with gcd(π3) = 4.

Since π2 is a finer partition than π3, the uncontrollable

binary vectors constant on the cells of π3 have already been

accounted for from π2. Let w 6= 1n be an eigenvector

of L in img(P(π3)). Then w = α1c1 + α2c2 and thus

4α1 + 8α2 = 0, or equivalently α1 + 2α2 = 0. Let b be

such that |χ(b) ∩ C1| = d and |χ(b) ∩ C2| = 2d where

d ∈ {1, 2, 3}. Then wTb = dα1 + 2dα2 = 0. Not including

the ones that have already been accounted for from π2, for

d = 1 there are
(

4
1

) [

2
(

4
2

)]

= 48 choices for b, for d = 2
there are

(

4
2

) [

2
(

4
0

)(

4
4

)

+ 2
(

4
1

)(

4
3

)]

= 204 choices for b, and

for d = 3 there are
(

4
3

) [

2
(

4
4

)(

4
2

)]

= 48 choices for b. Hence,

there are 300 uncontrollable leader-selections corresponding

to π3.

Hence, using Theorem 5.1 we can account for only 8

uncontrollable leader selections while with Theorem 5.2 we

can account for 1148. However, we have computed that the

Frucht graph has 1936 uncontrollable leader selections, and

thus 780 remain unaccounted for. •
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Remark 5.3: (The case of no reducible AEP): Let G
be a graph on n vertices and let π = {C1, C2, . . . , Ck} be a

partition of G. Then |C1|+|C2|+· · ·+|Ck| = n and therefore

if n is prime then necessarily gcd(π) = 1. Hence, in this

case, G contains no reducible AEPs, and thus Theorem 5.2

is not applicable. •

Using the quotient graph, we give a further case in which

the eigenvectors in img(P(π)) are orthogonal to binary vec-

tors that are not orthogonal to eigenvectors in ker(PT (π)).
The situation arises when π, in contrast to Theorem 5.2, is

not necessarily a reducible AEP.

Theorem 5.3: (A necessary condition for controllabil-

ity: symmetry-breaking leaders): Let G be a weighted

digraph with normal Laplacian matrix L. Let π =
{C1, C2, . . . , Ck} be an almost equitable partition of G.

Suppose that ρ = {S1, S2, . . . , Sℓ} is a non-trivial almost

equitable partition of the quotient graph G/π. Enumerate

the elements of Si as Si = {Ci,1, Ci,2, . . . , Ci,ki
} for

i = 1, 2, . . . , ℓ. For i ∈ {1, 2, . . . , ℓ} such that ki ≥ 2,

suppose that pi = gcd(|Ci,1|, . . . , |Ci,ki
|) ≥ 2 and let

qi,j =
|Ci,j |
pi

, for j = 1, 2, . . . , ki. For i such that ki ≥ 2,

let di ∈ {1, 2, . . . , pi − 1} and suppose that b is such that

|χ(b) ∩ Ci,j | = diqi,j . Then (L,b) is uncontrollable.

The next example shows how Theorem 5.3 can be used to

account for uncontrollable leader selections not covered by

Theorem 5.2.

Example 5.2: Consider again the asymmetric 3-regular

Frucht graph on n = 12 vertices shown in Figure 5 and

studied in Example 5.1. The Laplacian matrix of the quotient

graph G/π2 is

Lπ2
=





0 1 1
1 0 2
1 2 0





and it is easy to see that ρ = {{C1}, {C2, C3}} is an

equitable partition of Lπ2
. The partition π2/ρ is precisely

π3 from Example 5.1. Now, from Theorem 5.3, if b is such

that |χ(b) ∩ C2| = 2, |χ(b) ∩ C3| = 2, and χ(b) ∩ C1 is

arbitrary, then (L,b) is uncontrollable. Such choices of b

are not all characterized by Theorem 5.2. Indeed, applying

Theorem 5.2 to π2 directly as in Example 5.1, we must have

that |χ(b) ∩ Cj | = d for j = 1, 2, 3 where d ∈ {1, 2, 3}.

Hence, the case |χ(b) ∩ C1| = 2 is the only one that

has been accounted for by Theorem 5.2, but the cases

|χ(b) ∩ C1| ∈ {0, 1, 3, 4} induce new uncontrollable leader

selections characterized by Theorem 5.3. There are a total of
(

4
2

)(

4
2

) [(

4
0

)

+
(

4
1

)

+
(

4
3

)

+
(

4
4

)]

= 360 such choices for b. •

VI. CONCLUSIONS

In this paper, we considered the leader-selection controlla-

bility problem for graphs. The main results of the paper are

two new necessary conditions for controllability involving

almost equitable partitions (Theorem 5.2 and Theorem 5.3).

We also generalized the known results on the role of graph

symmetries and uncontrollability to weighted digraphs and

multiple-leaders (Theorem 5.1). The results were illustrated

on non-trivial examples.
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