Sequences	Instructor: Cesar Aguilar
Real Analysis	Department of Mathematics, SUNY Geneseo
Review Questions	South 325A, aguilar@geneseo.edu

Disclaimer: This is a list of questions to guide you through your studies. Not everything that is asked in these questions will actually be tested (due to time constraints), and conversely, there might be a question that is tested that was not explicitly covered by these questions. Use these questions only as a supplement to the questions in the lecture notes/homework and don't feel like you need to answer every question here to be 100% ready for your test. **Solutions to these questions will not be provided.**

- 1. The sequence (x_n) converges to L if _____
- 2. A sequence (x_n) is bounded if _____
- 3. Prove by definition that $\lim_{n\to\infty} \frac{n+1}{n^2} = 0$.
- 4. Prove by definition that $\lim_{n\to\infty} \frac{2n^3+n}{n^3+4} = 2$.
- 5. Prove by definition that $\lim_{n\to\infty} \frac{\cos(n)}{n^2-1} = 0$.
- 6. Let (x_n) be a sequence and let $L \in \mathbb{R}$. Suppose that

$$|x_n - L| \le \frac{1}{n^2}$$
 for all $n \ge 33$

Prove by definition that (x_n) converges to L.

- 7. Prove that if (x_n) is convergent then it is bounded.
- 8. Suppose that $(x_n) \to L$ and $(y_n) \to M$. Define the sequence $z_n = 2x_n + 4y_n$. Prove by definition that (z_n) converges to 2L + 4M.
- 9. Suppose that $(x_n) \to 0$ and suppose that (y_n) is bounded. Prove that $\lim_{n \to \infty} x_n y_n = 0$.
- 10. Suppose that $(x_n) \to L$. Let (y_n) be a sequence such that for every $\varepsilon > 0$ there exists $K \in \mathbb{N}$ such that $|x_n y_n| < \varepsilon$ for all $n \ge K$. Prove that (y_n) also converges to L.
- 11. Give examples of the following:
 - (a) Divergent sequences (x_n) and (y_n) such that $z_n = x_n y_n$ converges.
 - (b) Divergent sequences (x_n) and (y_n) such that $z_n = x_n y_n$ diverges.
 - (c) A divergent sequence (x_n) and a convergent sequence (y_n) such that $z_n = x_n y_n$ converges.
 - (d) A divergent sequence (x_n) and a convergent sequence (y_n) such that $z_n = x_n y_n$ diverges.
- 12. Use the Limit Theorems to prove that if (x_n) converges and (x_n+y_n) converges then (y_n) converges. Give an example of two sequences (x_n) and (y_n) such that **both** (x_n) and (y_n) diverge but (x_n+y_n) converges.
- 13. State the Monotone Convergence Theorem (MCT).
- 14. True or false, a convergent sequence is necessarily monotone? If it is true then prove it, or if it is false then give an example of a convergent sequence that is not monotone.
- 15. Give an example of a monotone sequence that diverges.
- 16. Give an example of a bounded sequence that diverges.
- 17. Consider the sequence (x_n) defined as $x_1 = 1$ and $x_{n+1} = \frac{n}{8n+1}x_n^4$ for $n \ge 1$.

- (a) Prove that $0 \le x_n \le 1$ for all $n \ge 1$.
- (b) Prove that (x_n) is monotone.
- (c) What theorem allows you to conclude that (x_n) is convergent?
- (d) If $L = \lim_{n \to \infty} x_n$, is it possible for L > 1? Explain.
- (e) Find $\lim_{n \to \infty} x_n$.
- 18. We proved that if (x_n) converges to L then $(|x_n|)$ converges to |L|. The converse, however, is not true. Find an example of a sequence (x_n) such that $(|x_n|)$ converges but (x_n) is divergent.
- 19. Prove that if (x_n) converges to L then every subsequence of (x_n) converges to L.
- 20. Suppose that (x_n) is an increasing sequence and let (x_{n_k}) be a subsequence of (x_n) .
 - (a) Prove that if (x_{n_k}) is bounded above then (x_n) is also bounded above.
 - (b) Are (x_{n_k}) and (x_n) convergent? Why?
 - (c) Is it necessarily true that $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n$? Why?
- 21. Suppose that (x_n) is a decreasing sequence and let (x_{n_k}) be a subsequence of (x_n) .
 - (a) Prove that if (x_{n_k}) is bounded below then (x_n) is also bounded below.
 - (b) Are (x_{n_k}) and (x_n) convergent? Why?
 - (c) Is it necessarily true that $\lim_{k\to\infty} x_{n_k} = \lim_{n\to\infty} x_n$? Why?
- 22. State the Bolzano-Weierstrass Theorem.
- 23. Show directly that if (x_n) is a Cauchy sequence then it is bounded.
- 24. Show that if (x_n) is convergent then it is a Cauchy sequence.
- 25. Suppose that (x_n) and (y_n) are sequences such that $|x_m x_n| \le |y_m y_n|$ for all $n, m \in \mathbb{N}$. Show that if the sequence (y_n) is convergent then so is the sequence (x_n) .
- 26. Let 0 < r < 1. Show that if the sequence (x_n) satisfies $|x_n x_{n+1}| < r^n$ for all $n \in \mathbb{N}$ then (x_n) is a Cauchy sequence and therefore convergent.