Disclaimer: This is a list of questions to guide you through your studies. Not everything that is asked in these questions will actually be tested (due to time constraints), and conversely, there might be a question that is tested that was not explicitly covered by these questions. Use these questions only as a supplement to the questions in the lecture notes/homework. Solutions to these questions will not be provided.

1. The Real Numbers and The Completeness Property

- 1. Prove that $\sqrt{2}$ is irrational.
- 2. Prove that if a < x < b and a < y < b then |x y| < b a.
- 3. State the Triangle inequality.
- 4. Let $f(x) = 3\sin(x) + x^4 7x$. Prove that $|f(x)| \le 33$ if $-2 \le x \le 2$.
- 5. Give the definition for bounded above, bounded below, and bounded for a given non-empty set $S \subset \mathbb{R}$.
- 6. Give the definition of the supremum and infimum of a given set.
- 7. State the Completeness Property of \mathbb{R} .
- 8. Let A and B be non-empty. If $A \subset B$ and B is bounded above, prove that $\sup(A) \leq \sup(B)$.
- 9. Let A and B be non-empty and bounded above. Prove that $\sup(A + B) = \sup(A) + \sup(B)$.
- 10. Let A and B be non-empty and bounded above. Prove that $\sup(A \cup B) = \max\{\sup(A), \sup(B)\}$.
- 11. Let A and B be non-empty and bounded below. Prove that $\max\{\inf(A), \inf(B)\} \le \inf(A \cap B)$. Give an example of sets A and B where $\max\{\inf(A), \inf(B)\} < \inf(A \cap B)$.
- 12. Let A be non-empty and bounded below. Let $-A = \{y \in \mathbb{R} \mid y = -x, \text{ for some } x \in A\}$. Prove that -A is bounded above and that $\sup(-A) = -\inf(A)$.
- 13. What is the Archimedean property of \mathbb{R} .
- 14. What is the Density theorem?
- 15. What is the Nested Intervals Property?