
The PageRank Algorithm

Cesar O. Aguilar

SUNY Geneseo
Department of Mathematics

April 30, 2021

Search Engines

• Internet search engines perform a two-stage process:
• Stage 1: Traditional text processing

• Stage 2: The pages are sorted and displayed based on a
pre-computed ranking that is query-independent

• How Google search works:
https://www.youtube.com/watch?v=Md7K90FfJhg

• The pre-computed ranking is based on the hyperlink structure of
the web

• Basic idea of ranking method: If many pages link to page Pi then
Pi must be an important page and thus will have a high numerical
rank

• The rank of each page is called its PageRank, named after Larry
Page one of the founders of Google

• Before the mid 1990’s, traditional text processing was the
predominant method

https://www.youtube.com/watch?v=Md7K90FfJhg

PageRank and HITS

• In 1998, Jon Kleinberg from IBM (now a CS professor at Cornell)
presented the HITS algorithm (Hyperlink-Induced Topic Search)

• At Stanford, doctoral students Sergey Brin and Larry Page were
busy working on a similar project which they had begun in 1995

“In this paper, we present Google, a prototype of a large-scale search
engine which makes heavy use of the structure present in hypertext.
Google is designed to crawl and index the Web efficiently and
produce much more satisfying search results than existing systems.
The prototype with a full text and hyperlink database of at least 24
million pages is available at http://google.stanford.edu/ .”

Larry Page and Sergey Brin

PageRank and HITS

• In both algotihms, the web is modeled as a directed graph

• Vertices represent webpages

• The directed edges represent hyperlinks

• Goal of algorithms: Determine important pages on a particular topic
based on the hyperlink structure

www.geneseo.edu

1

www.twitter.com3www.facebook.com 2

www.wikipedia.org

4

A Description of the PageRank Algorithm

• The purpose of the PageRank algorithm is to produce a numerical
rank 0 < xi ≤ 1 for each page Pi

• Each in-link is viewed as a recommendation or vote

• The vote of each page is equally distributed among all its out-going
links

Pj

Pi Pk P
ℓ

1
3

1
3

1
3

• The PageRank xi of page Pi is:

xi =
∑

j→i

xj

|Nj |

• Nj is the number of out-links from page j
• j → i means page j links to page i

• Do this for each xi and get a set of equations for all the PageRanks

Google’s PageRank Algorithm

www.geneseo.edu

1

www.twitter.com3www.facebook.com 2

www.wikipedia.org

4

• For page i = 1: x1 =
x3

1
+

x4

2

• For page i = 2: x2 =
x1

3

• For page i = 3: x3 =
x1

3
+

x2

2
+

x4

2

• For page i = 4: x4 =
x1

3
+

x2

2

Google’s PageRank Algorithm

• The equations for the PageRanks:

x1 = x3 +
1
2x4

x2 =
1
3x1

x3 =
1
3x1 +

1
2x2 +

1
2x4

x4 =
1
3x1 +

1
2x2

• We can write all four equations in matrix form:










x1

x2

x3

x4











=











0 0 1 1
2

1
3 0 0 0

1
3

1
2 0 1

2

1
3

1
2 0 0





















x1

x2

x3

x4











• This is a linear equation for the unknown vector x = (x1, x2, x3, x4):

x = A · x

• This is an eigenvalue-eigenvector problem

Example

1

32

4

www.geneseo.edu

www.twitter.comwww.facebook.com

www.wikipedia.org

A =












0 0 1
1

2

1

3
0 0 0

1

3

1

2
0

1

2

1

3

1

2
0 0












• λ = 1 is an eigenvalue with corresponding PageRank eigenvector

x∗ = (0.721, 0.240, 0.540, 0.360)

• The ranking of the webpages is determined by ordering the entries of
x∗:

0.721 0.540 0.360 0.240
P1 P3 P4 P2

geneseo.edu twitter.com wikipedia.org facebook.com

Google’s PageRank Algorithm

• For large matrices, finding eigenvectors is not easy

• In 2006, n = 8.1× 109 (8.1 billion) and directly solving the
equations is not feasible

• Instead, an iterative method called the Power Method is used

• One starts with an initial guess, say x0 = (14 ,
1
4 ,

1
4 ,

1
4)

• Then one updates the guess by computing

x1 = A · x0

• One updates again

x2 = A · x1 = A2 · x0

• And continue iterating:
xk = Ak · x0

• What happens in the limit?

lim
k→∞

(Ak · x0)

Google’s PageRank Algorithm

Some natural questions and concerns:

• Under what conditions will lim
k→∞

(Ak · x0) exist and be unique?

• If lim
k→∞

(Ak · x0) exists, will it be a positive vector?

• Can x0 be chosen arbitrarily?

• If n is very large (and it is!), computing Ak · x0 is not going to be
easy

• Each matrix-vector multiplication requires n2 multiplications

• Storing A is not going to be easy; for example, if n = 24× 106 need
approximately 4191 TB to store A

• Let’s first deal with the math and then with the implementation

Example

1

3

4 5

2 A =















0 1
3 0 0 0

0 0 1
2 0 0

0 1
3 0 0 0

0 1
3

1
2

0 1

0 0 0 1 0















• Starting with x0 = (15 , . . . ,
1
5) we obtain that for k ≥ 39, the vectors

xk = Akx0 cycle between (0, 0, 0, 0.28, 0.40) and (0, 0, 0, 0.40, 0.28)

• Why? Nodes 4 and 5 form a cycle (internet is not strongly
connected)

Example

1

3

4 5

2 A =















0 1
3 0 0 0

0 0 1
2

1
2 0

0 1
3 0 0 0

0 1
3

1
2

0 1

0 0 0 1
2 0















• If we adjust for the cycle node 1 is still a dangling node (e.g. a
node with no out-links)

• Starting with x0 = (15 , . . . ,
1
5) results in xk → 0

Adjustments Made by Brin and Page

• Adjustment 1: To deal with a dangling node, replace the
associated zero-column with the vector 1

n
e = (1

n
, 1
n
, . . . , 1

n
)

• Justification: The node now links to all pages and so recommends
all nodes equally

• Adjustment 2: A surfer may abandon the hyperlink structure of the
web by ocassionally moving to a random page by typing its address
in the browser (fixes the connectivity issue)

• With these adjustments, the new transition matrix becomes

G = αA + (1− α) 1
n
J

• A: adjustment for dangling nodes; A = A + 1
n
e · aT

• (1 − α) 1
n
J: adjustment for lack of connectivity

• G is called the Google matrix, and Google uses α = 0.85

Example: G = αA + (1− α) 1
n
J

1

3

4 5

2 A =















0 1
3 0 0 0

0 0 1
2

1
2 0

0 1
3 0 0 0

0 1
3

1
2 0 1

0 0 0 1
2

0















G = α















1
5

1
3 0 0 0

1
5 0 1

2
1
2 0

1
5

1
3 0 0 0

1
5

1
3

1
2 0 1

1
5 0 0 1

2 0















︸ ︷︷ ︸

A

+
(1− α)

5















1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1















︸ ︷︷ ︸

J

Mathematical Justifications for the Adjustments

• G is positive and column-stochastic matrix

• λ = 1 is an eigenvalue of G and all eigenvalues have magnitude ≤ 1

• Apply a theorem in matrix analysis (Perron-Frobenius):

Theorem. For the Google matrix G the following hold:

(i) λ = 1 is the largest (in magnitude) eigenvalue and it is simple.
(ii) There is a unique real and positive vector x∗ such that

G · x∗ = x∗ and whose entries sum to one.
(iii) For any initial probability vector x0 it holds that

lim
k→∞

Gkx0 = x∗

The vector x∗ is known as the PageRank vector

Computational and Storage Issues

• Power Method: need to compute G · x many times

• G is completely dense and so G · x requires n2 multiplications

• Fortunately, we can decompose G:

G = αA + α

n
e · aT + (1−α)

n
e · eT

• To compute G · x we really just need to compute:

(i) A · x (ii) aT x =
n∑

i=1

aixi (iii) eT x =
n∑

i=1

xi

• The average webpage has about 10 outlinks, so A has about 10n
non-zero entries

• A is a sparse matrix (n = 24× 106 need ≈ 5.4 GB to store A)

• This means that computing A · x reduces to about 10n
multiplications!!!! And 10n is A LOT LESS than n2 when n is big

Other Applications of PageRank

The PageRank algorithm is one of several used to determine which
vertices in a network are the most important (node centrality)

• Biology: GeneRank, ProteinRank

• Engineering: MonitorRank (debugging), Linux kernel (dependencies
between functions), traffic flow and human movement

• Bibliometrics: CiteRank (journals), AuthorRank (authors)

• Recommender systems: ItemRank (Netflix, Amazon)

• Sports: FIFA Soccer, NCAA Division I Football

• The only NCAA-sponsored sport without an officially organized
tournament to determine its champion (March Madness)

• Bowl Championship Series (BCS): Selection system in place from
1998-2013 to select top 2 teams for championship game

• Used AP Poll, USA Today Poll, and computer rankings by experts

• Favored 6 conferences resulting in several controversies and lawsuits

College Football Team Ranking

• Teams now ranked by a 13-member committee (CFP)

• At the end of the season, the top 4 ranked teams compete in a
playoff tournament to determine the National Champion

• PageRank has been proposed to rank the teams

• The setup:

• Vertices: Teams = {T1,T2,T3, . . . ,T128}

• Arcs: From j to i if team Tj losses to Ti

i

jwinner

loserTi = Duke

Tj = Notre Dame

• If s(i , j) = Score(Ti)− Score(Tj), the arcs will have weights:

A(i , j) =
s(i , j)

∑

j→k s(k , j)

College Football Team Ranking (n = 128)

Rank Page Record
1. Clemson 13-1
2. Pittsburgh 7-5
3. Alabama 13-1
4. Miami (Florida) 8-4
5. Virginia Tech 9-4
6. Ohio State 11-2
7. Michigan 10-3
8. Oklahoma 11-2
9. Tennessee 8-4
10. Oklahoma State 9-3
11. Louisville 9-4
12. Wisconsin 11-3
13. North Carolina 6-5
14. Houston 8-4
15. Penn State 11-3
16. Washington 11-2
17. Northwestern 7-5
18. Florida State 9-3
19. Southern California 10-3
20. Louisiana State 7-4

College Football Team Ranking (n = 128)

Rank Page Record
1. Clemson 13-1
2. Pittsburgh 7-5
3. Alabama 13-1
4. Miami (Florida) 8-4
5. Virginia Tech 9-4
6. Ohio State 11-2
7. Michigan 10-3
8. Oklahoma 11-2
9. Tennessee 8-4
10. Oklahoma State 9-3
11. Louisville 9-4
12. Wisconsin 11-3
13. North Carolina 6-5
14. Houston 8-4
15. Penn State 11-3
16. Washington 11-2
17. Northwestern 7-5
18. Florida State 9-3
19. Southern California 10-3
20. Louisiana State 7-4

• Pittsburgh only team to beat
Clemson (43-42)

• Miami beat Pittsburgh (51-28)

• Virginia Tech beat Miami (37-16)

• Tennessee beat Virginia Tech
(45-24)

Clemson losing to Pittsburgh is
like facebook.com having a link

to your personal website

College Football Team Ranking (n = 128)

What if Pittsburgh hadn’t upset Clemson?

Rank Page Record
1. Clemson 13-1
2. Pittsburgh 7-5
3. Alabama 13-1
4. Miami (Florida) 8-4
5. Virginia Tech 9-4
6. Ohio State 11-2
7. Michigan 10-3
8. Oklahoma 11-2
9. Tennessee 8-4
10. Oklahoma State 9-3
11. Louisville 9-4
12. Wisconsin 11-3
13. North Carolina 6-5
14. Houston 8-4
15. Penn State 11-3
16. Washington 11-2
17. Northwestern 7-5
18. Florida State 9-3
19. Southern California 10-3
20. Louisiana State 7-4

Rank Page Record
1. Clemson 14-0
2. Alabama 13-1
3. Ohio State 11-2
4. Michigan 10-3
5. Oklahoma 11-2
6. Washington 11-2
7. Louisville 9-4
8. Penn State 11-3
9. Wisconsin 11-3
10. Houston 8-4
11. Virginia Tech 9-4
12. Southern California 10-3
13. Florida State 9-3
14. Louisiana State 7-4
15. Miami (Florida) 8-4
16. Florida 9-4
17. Tennessee 8-4
18. Colorado State 6-6
19. San Diego State 10-3
20. Oklahoma State 9-3

Research Questions

• How do you adjust the modeling so that if a low tier team beats a
high tier one, the final PageRanks are not skewed like in the 2016
College FBS?

• What other networks possess this upset phenomenon and how to
deal with it there?

