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Hypothesis Testing

• Parameter estimation, covered in the last chapter, is one of the two
“big ideas” in inferential statistics

• The other big idea is hypothesis testing

• In hypothesis testing, you as the researcher have some theory about the
world and you want to determine whether the data supports the theory

• A hypothesis test is a statistical technique used to evaluate competing
claims using data

• Specifically, a hypothesis test is a procedure that allows us to
determine whether the data provide sufficient evidence to reject a null
hypothesis in favor of an alternative hypothesis

• Frequently, the null hypothesis takes a stance of no difference or no
effect

• If the null hypothesis and the data notably disagree, then we will reject
the null hypothesis in favor of the alternative hypothesis



Hypothesis Testing

• Suppose that we want to determine whether a certain coin is fair or not

• We have no reason to believe that the coin is biased towards heads or
tails

• We perform an experiment by flipping the coin N = 100 times and
obtain X = 62 heads

• Do we have enough evidence to conclude that the coin is not fair?

• Let’s denote the probability of getting a head as θ



Hypothesis Testing

• Below are different statistical hypotheses that we could test:

• If the coin is fair, we should expect the coin to land heads half the
time and so the statistical hypothesis is that θ = 0.5

• If the coin is not fair and biased towards landing heads, then the
statistical hypothesis is that θ > 0.5

• If the coin is not fair but biased towards landing tails, then the
statistical hypothesis is that θ < 0.5

• If the coin is not fair then we may not know whether it is biased
towards heads or tails, so the statistical hypothesis is that θ 6= 0.5

• Because we have no reason to believe that the coin is biased towards
heads or tails, we will test the hypothesis that θ = 0.5

• This is called the null hypothesis and is denoted by H0



The Null Hypothesis

• The null hypothesis in a statistical test is the hypothesis that the data
were generated by chance; it represents a skeptical perspective and is
often a claim of no change or no difference

• In our example, the null hypothesis is that the coin is fair and any
deviation from the expected number of heads is due to chance

• The null hypothesis is deemed to be true unless you, the researcher,
can prove beyond a reasonable doubt that it is false

• You can think of a statistical test as a trial where the null hypothesis is
the defendant and you are the prosecutor

• You are free to design your experiment however you like (within reason,
obviously!) and your goal is to maximise the chance that the data will
yield a conviction for the crime of being false

• The statistical test sets the rules of the trial to protect the null
hypothesis, specifically to ensure that if the null hypothesis is true the
chances of a false conviction are guaranteed to be low



The Alternative Hypothesis

• The alternative hypothesis is the hypothesis that the data were not
generated by chance

• It is the claim researchers hope to prove or find evidence for, and it
often asserts that there has been a change or an effect

• The alternative hypothesis is denoted by H1 or HA

• Because the alternative hypothesis is the hypothesis that we are trying
to prove, it should be formulated before the experiment is conducted

• In our case, the alternative hypothesis is that the coin is not fair but
we don’t know whether it is biased towards heads or tails

• Thus, the alternative hypothesis is that θ 6= 0.5



Hypothesis Test

• Our hypothesis test is as follows:

H0: The coin is fair with probability of heads θ = 0.5

HA: The coin is not fair with probability of heads θ 6= 0.5

• Depending on the outcome of the test, we will either reject the null
hypothesis in favor of the alternative hypothesis or fail to reject the
null hypothesis or retain the null hypothesis

• We will never “accept the null hypothesis” or “accept the alternative
hypothesis”



Hypothesis Test Errors

• After running a hypothesis test and making a decision, there are four
possible outcomes

• If the null hypothesis is TRUE, we can either make the correct decision
or make an error

• If the null hypothesis is FALSE, we can either make the correct
decision or make an error

• Thus, there are two types of errors that can occur in a hypothesis test:

Retain H0 Reject H0

H0 is true correct decision error (Type I)

H0 is false error (Type II) correct decision

• The single most important design principle of the test is to control the
probability of a Type I error, to keep it below some fixed probability



Hypothesis Test Errors

• The probability of making a Type I error is called the significance
level of the test and is denoted by α

• A hypothesis test is said to have significance level α if the Type I error
rate is no larger than α

• The probability of making a Type II error is denoted by β

• The power of the test is 1− β and is the probability of rejecting the
null hypothesis when it is false

Retain H0 Reject H0

H0 is true 1− α (correct decision) α (Type I error)

H0 is false β (Type II error) 1− β (power of test)

• By convention, scientists make use of three different levels: α = 0.05,
α = 0.01, and α = 0.001



Test Statistics and Sampling Distributions

• To make a decision about whether to reject the null hypothesis, we
need to calculate a test statistic

• In the case of our coin flip experiment, the test statistic is the number
of heads X in N flips

• In this case, the underlying distribution of the test statistic is the
binomial distribution:

X ∼ Binomial(N, θ)

• The null hypothesis is that θ = 0.5 and if it were true then the most
likely value of X would be µ = N · θ = 50

• Moreover, if the null hypothesis were true then we’re almost certain to
see somewhere between 40 and 60 heads because

P(40 ≤ X ≤ 60) = 0.9648



Test Statistics and Sampling Distributions



Test Statistics and Sampling Distributions

• In general, the sampling distribution in question describes the
probability that we would obtain a particular value of X if the null
hypothesis were actually true

• To decide to either reject or retain the null hypothesis, we introduce
the concept of a critical region or rejection region for the test
statistics X

• The critical region of the test corresponds to those values of X that
would lead us to reject null hypothesis

• The critical region is defined by the significance level α

• For example, if α = 0.05 then the critical region must cover 5% of the
probability of the sampling distribution

• Hence, if the null hypothesis is true then the probability of incorrectly
rejecting the null hypothesis is α



Test Statistics and Sampling Distributions



Test Statistics and Sampling Distributions

• At this point, our hypothesis test is essentially complete:

1. We choose an α level (e.g., α = .05)

2. Come up with some test statistic (e.g., X ) that does a good job (in
some meaningful sense) of comparing H0 to H1

3. Figure out the sampling distribution of the test statistic on the
assumption that the null hypothesis is true (in this case, binomial)

4. Then calculate the critical region that produces an appropriate α
level (0-40 and 60-100).

• In our running example, X = 62 is in the critical region and so we
reject the null hypothesis

• We then say that the result is statistically significant at the α = 0.05
level

• All that “statistically significant” means is that the data allowed us to
reject a null hypothesis



One-Sided and Two-Sided Tests

• The hypothesis test we conducted took the form

H0 : θ = 0.5
H1 : θ 6= 0.5

• Therefore, the alternative hypothesis H1 covers both the possibility
that θ < 0.5 and the possibility that θ > 0.5

• This is an example of a two-sided test

• It’s called this because the alternative hypothesis covers the area on
both “sides” of the null hypothesis

• As a consequence, the critical region of the test covers both tails of the
sampling distribution (2.5% on either side if α = 0.05)



One-Sided and Two-Sided Tests

• We might instead want to perform the following hypothesis test:

H0 : θ ≤ 0.5
H1 : θ > 0.5

• In the coin flip example, this would correspond to the null hypothesis
that the coin is fair or biased towards tails

• This is a one-sided test

• In this case, the critical region only covers one tail of the sampling
distribution



One-Sided and Two-Sided Tests



General Hypothesis Testing

• In general, we want to test a null hypothesis H0 regarding some
parameter θ against an alternative hypothesis H1

• The null hypothesis is H0 : θ = θ0

• We need an estimator θ̂ that has a known sampling distribution under
the null hypothesis

• We fix the significance level α, if not specified use α = 0.05

• To test the null hypothesis, we use the Z -statistic

Z =
θ̂ − θ0

σθ̂

• The rejection region depends on the alternative hypothesis H1



General Hypothesis Testing

• If the alternative hypothesis is that H1 : θ 6= θ0 then the test is
two-sided and the rejection region is{

Z < −zα/2 or Z > zα/2

}
• If the alternative hypothesis is that H1 : θ > θ0 then the test is

one-sided and the rejection region is

{Z > zα}

• If the alternative hypothesis is that H1 : θ < θ0 then the test is
one-sided and the rejection region is

{Z < −zα}



Summary: General Hypothesis Testing

H0 : θ = θ0

H1 :


θ > θ0 (upper-tail alternative)

θ < θ0 (lower-tail alternative)

θ 6= θ0 (two-tail alternative)

Test statistic: Z =
θ̂ − θ0

σθ̂

Rejection region:


Z > zα (upper-tail test)

Z < −zα (lower-tail test)

Z < −zα/2 or Z > zα/2 (two-tail test)



Example: Hypothesis Test for a Population Mean

Example. A call center manager believes that employees are averaging
more than 15 sales per week. To test the claim, the manager selects a
random week and 36 random employees. The sample mean and sample
standard deviation of sales for the 36 employees were recorded as 17
and 3, respectively. Does the collected data support the manager’s
belief?

• Let µ denote the average number of sales per week per employee

• The null hypothesis is H0 : µ = 15

• The alternative hypothesis is H1 : µ > 15

• The test statistic is the sample mean X̄ , which for n ≥ 30, has an
approximately normal sampling distribution with mean µ and standard
deviation σX̄ = σ/

√
n

• The Z -statistic is Z =
X̄ − µ
σX̄

=
X̄ − µ
σ/
√
n



Example: Hypothesis Test for a Population Mean

• The rejection region is {Z > zα} where the critical value zα is
determined by the significance level α = 0.05

• Using SALT we get that zα = 1.645 because P(Z > 1.645) = α

• Although σ is not known, we can use the sample standard deviation
s = 3 as an estimate because n ≥ 30 is sufficiently large

• The observed value of the test statistic is

Z =
X̄ − µ
σ/
√
n

=
17− 15

3/
√

36
= 4

• Thus, the observed Z -score is inside the rejection region, so we reject
the null hypothesis and conclude that the data supports the manager’s
belief



Example: Hypothesis Test for a Population Proportion

Example. A grocery store receives a large order of eggs. The store
will not accept the order if more than 10% of the eggs are cracked.
The store manager randomly selects 100 eggs from the order and finds
that 15 of them are cracked. Should the store accept the order? Use
a signficance level of 0.01.

• Let p denote the proportion of eggs that are cracked in the order

• The null hypothesis is H0 : p = 0.1

• The alternative hypothesis is H1 : p > 0.1

• The test statistic is the sample proportion p̂, which for n ≥ 30, has an
approximately normal sampling distribution with mean p and standard
deviation σp̂ =

√
p(1− p)/n

• The Z -statistic is

Z =
p̂ − p

σp̂
=

p̂ − p√
p(1− p)/n



Example: Hypothesis Test for a Population Proportion

• The rejection region is {Z > zα} where the critical value zα is
determined by the significance level α = 0.01

• Using SALT we get that zα = 2.326 because P(Z > 2.326) = α

• The observed sample proportion is p̂ = 15/100 = 0.15

• The observed value of the test statistic is

Z =
p̂ − p√

p(1− p)/n
=

0.15− 0.1√
0.1(1− 0.1)/100

= 1.667

• Thus, the observed Z -score is not inside the rejection region, so we fail
to reject the null hypothesis and conclude that the data does not
support the store manager’s belief



Mean and Variances of Commonly Used Test Statistics

θ Sample Size Estimator Mean Std. Deviation

µ n X̄ µ σ/
√
n

p n p̂ = X/n p
√

p(1−p)
n

µ1 − µ2 n1 and n2 X̄1 − X̄2 µ1 − µ2

√
σ2

1

n1
+

σ2
2

n2

p1 − p2 n1 and n2 p̂1 − p̂2 p1 − p2

√
p1(1−p1)

n1
+ p2(1−p2)

n2

• For two samples, the samples are assumed to be independent



Example: Hypothesis Test for a Difference in
Population Means

Example. A study was performed to measure the reaction times for
two groups, Group A and Group B. Independent samples of 50 were
gathered for each group. The average reaction time for the Group A
sample was 3.6 seconds, with variance 0.18. The average reaction time
for the Group B sample was 3.8 seconds, with variance 0.14. Does the
collected data support the claim that there exists a difference in the
average reaction times for the groups?

• Let µA and µB denote the average reaction times for Group A and
Group B, respectively

• The null hypothesis is H0 : µA − µB = 0

• The alternative hypothesis is H1 : µA − µB 6= 0

• The Z -statistics is Z =
(X̄A − X̄B)− (µA − µB)√

σ2
A

nA
+

σ2
B

nB



Example: Hypothesis Test for a Difference in
Population Means

• The rejection region is
{
Z < −zα/2 or Z > zα/2

}
where the critical

value zα/2 is determined by the significance level α = 0.05

• Using SALT we get that zα/2 = 1.96 because P(|Z | > 1.96) = α

• Although we don’t have the population variances, we can use the
sample variances as estimates

• The observed value of the test statistic is

Z =
(X̄A − X̄B)− (µA − µB)√

σ2
A

nA
+

σ2
B

nB

=
(3.6− 3.8)− 0√

0.18
50 + 0.14

50

= −2.5

• Thus, the observed Z -score is inside the rejection region, so we reject
the null hypothesis and conclude that the data supports the claim that
there exists a difference in the average reaction times for the groups



Example: Hypothesis Test for a Difference in
Population Proportions

• The cause of racial wage gap

• Skew the Script

https://www.youtube.com/watch?v=Fbhf9L8SS4M

https://www.youtube.com/watch?v=Fbhf9L8SS4M


The p-value of a Test

• If in the running coin flip example we observed X = 97 then we would
have also rejected the null hypothesis

• The value of X = 97 is obviously more extreme than X = 62 and
loosely speaking more “significant”

• However, the procedure that we’ve already described makes no
distinction between these two observed values of X

• That’s where the p-value comes in

• The p-value is the smallest value of α for which the null
hypothesis can be rejected

• In other words, the p-value of a test is the probability of obtaining a
value of the test statistic that is at least as extreme as the one
we observed, given that the null hypothesis is true



The p-value of a Test

• The smaller the p-value, the more compelling is the evidence that the
null hypothesis should be rejected

• Reporting the p-value allows the reader of published research to
evaluate the extent to which the observed data disagree with the null
hypothesis

• Reporting p-value permits each reader to use their own choice for α in
deciding whether the observed data should lead to rejection of the null
hypothesis



The p-value of a Test

• If the observed Z -score of the test statistics is z0, and we are
performing a two-sided test, then the p-value is

p = P(Z < −|z0| or Z > |z0|)

• If it is an upper-tail test then

p = P(Z > z0)

• And if it is a lower-tail test then

p = P(Z < z0)



Example: Hypothesis Test

Example. A class survey in a large class for first-year college stu-
dents asked, “About how many hours do you study during a typical
week?” The mean response of the 463 students was 13.7 hours. Pre-
vious studies have shown that study time follows a normal distribution
with standard deviation of 7.4 hours in the population of all first-year
students at this university. Does the current study support students’
claim to study more than 13 hours per week on average?

• Let µ denote the average number of hours studied per week by
first-year students at this university

• The null hypothesis is H0 : µ = 13

• The alternative hypothesis is H1 : µ > 13

• The Z -statistic is

Z =
X̄ − µ
σ/
√
n



Example: Hypothesis Test

• The rejection region is {Z > zα} where the critical value zα is
determined by the significance level α = 0.05

• Using SALT we get that zα = 1.645 because P(Z > 1.645) = α

• The observed value of the test statistic is

Z =
X̄ − µ
σ/
√
n

=
13.7− 13

7.4/
√

463
= 2.035

• Thus, the observed Z -score is inside the rejection region, so we reject
the null hypothesis and conclude that the data supports the claim that
students study more than 13 hours per week on average

• Because this is a two-sided test, and the observed value was
Z = 2.035, the p-value is

p = P(Z < −2.035 or Z > 2.035) = 0.042

• If we had chosen α = 0.01 then p > α and we would not have rejected



Example: Difference of Two Proportions

Example. Advertising on a news website resulted in 412 clicks out of
5000 visitors and advertising on a real estate website resulted in 312
clicks out of 3000 visitors. Is advertising on a real estate website more
effective? Use a significane level of 0.01

• Let p1 denote the proportion of visitors to the news website who click
on an ad and p2 denote the proportion of visitors to the real estate
website who click on an ad

• The null hypothesis is H0 : p1 − p2 = 0

• The alternative hypothesis is H1 : p1 − p2 > 0

• The Z -statistic is

Z =
p̂1 − p̂2 − 0√

p̂c(1− p̂c)( 1
n1

+ 1
n2

)

where p̂c = x1+x2

n1+n2
is the combined proportion of clicks



Example: Difference of Two Proportions

• We are given the following data: n1 = 5000, x1 = 412, n2 = 3000,
x2 = 312

• We compute that p̂1 = x1/n1 = 0.0824, p̂2 = x2/n2 = 0.078, and
p̂c = (x1 + x2)/(n1 + n2) = 0.0804

• The z-value is

z =
p̂1 − p̂2 − 0√

p̂c(1− p̂c)( 1
n1

+ 1
n2

)
= 0.7626221

• Using the standard normal distribution, the p-value is

p = P(Z > 0.7626221) = 0.223

• Since p > α = 0.05, we fail to reject the null hypothesis and conclude
that there is not enough statistical evidence to support the claim that
advertising on a real estate website is more effective



t-tests

• When running a hypothesis test for the mean, we used the sample
standard deviation s to estimate the population standard deviation σ

• When the sample size is large, this is a good approximation but in
practice we need to make some adjustment for the fact that we have
some uncertainty about what the true population standard deviation
actually is, especially for small samples

• The t-test is a modification of the Z -test that makes this adjustment

• The main difference is that instead of using the normal distribution to
approximate the sampling distribution of the test statistic, we use the
Student’s t-distribution

• The t-distribution tends to arise in situations where you think that the
data actually follow a normal distribution, but you don’t know the
mean or standard deviation

• The t-distribution is a continuous distribution that looks very similar
to a normal distribution



t-distribution



t-distribution

• When running a hypothesis test for the mean using the t-test, the test
statistic is

t =
X̄ − µ
s/
√
n

• In other words, we use the same form as the Z -test, but we use the
sample standard deviation s instead of the population standard
deviation σ

• The t-distribution has one parameter called the degrees of freedom,
which is equal to df = n − 1

• The t-distribution is symmetric about zero, and the mean and median
are both zero

• As n increases, the t-distribution approaches the normal distribution

• For large sample size n, the t-test behaves exactly the same way as a
z-test



Example: One Sample t-test

Example. Historically, the mean grade in a course taught by Professor
Lopez is 67.5. In the current version of the course consisting of 20
students, the average grade is 72.3 with sample standard deviation
9.52. Does the data support the claim that the current average in the
course is statistically different than the historical average?

• Let µ be the average grade in the course

• The null hypothesis is H0 : µ = 67.5

• The alternative hypothesis is H1 : µ 6= 67.5

• The t-statistic is

t =
X̄ − µ
s/
√
n

where s = 9.52 and n = 20 and X̄ = 72.3

• The t-statistic is t = 2.25

• Using SALT we get a p-value of p = 0.036



Example: One Sample t-test

• Since p < 0.05, the observed t-score is inside the rejection region when
α = 0.05

• Thus, we reject the null hypothesis and conclude that the data
supports the claim that the average grade in the course is statistically
different than the historical average

• To run a one-sample t-test in jamovi, we can use the T-Tests menu

• zeppo.csv contains the data from the example above



Comparing Two Means: Independent Samples t-test

• We now consider the problem of comparing two means from
independent samples with unknown population standard deviations

• The null hypothesis is H0 : µ1 − µ2 = 0

• The t-statistic is

t =
X̄1 − X̄2

sp
√

1
n1

+ 1
n2

where sp is the pooled standard deviation

• The pooled standard deviation is

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

where s1 and s2 are the sample standard deviations of the two samples

• We use a t-distribution with df = n1 + n2 − 2 degrees of freedom



Example: Independent Samples t-test

Example. A course contains 33 students and 2 tutors. There are 15
students in Tutor’s A tutorials and 18 students in Tutor’s B tutorials.
The research question that we are interested in is whether there is a
difference in students’ performance based on the tutor. Below is a
table summarzing the data:

Tutor mean std dev N

Tutor A 74.53 9.00 15

Tutor B 69.06 5.77 18

• Let µ1 be the average grade in Tutor A’s tutorials and µ2 be the
average grade in Tutor B’s tutorials

• The null hypothesis is H0 : µ1 − µ2 = 0

• The alternative hypothesis is H1 : µ1 − µ2 6= 0



Example: Independent Samples t-test

• The t-statistic is

t =
X̄1 − X̄2

sp
√

1
n1

+ 1
n2

• We are given that X1 = 74.53, X2 = 69.06, s1 = 9.00, s2 = 5.77,
n1 = 15, and n2 = 18

• The pooled standard deviation is

sp =

√
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
= 7.4052

• The t-statistic value is t = 2.12 and using SALT we get a p-value of
p = 0.043

• Since p < 0.05, the observed t-score is inside the rejection region when
α = 0.05, suggesting that Tutor A’s effectiveness is statistically
different than Tutor B’s



Example: Independent Samples t-test

• To run an independent samples t-test in jamovi, we can use the
T-Tests menu

• The data for this example is in harpo.csv



Paired Samples t-test

• One of the main assumptions in the Independent Samples t-test is that
the two samples are independent

• There are many research scenarios where this assumption clearly does
not hold

• As an example, a professor may want to know if the students in their
course had any improvement from one test to the next

• In this case, we would collect one sample of test 1 scores and another
sample of test 2 scores

• The problem is that the same students are in both samples, so the
samples are not independent

• In this case, we can use a paired samples t-test

• This test is just a one sample t-test where the sample mean is the
difference between the two sample means

• And the data is the difference between the two samples



Paired Samples t-test

• Suppose that we have two samples of size n:

x1, x2, . . . , xn

y1, y2, . . . , yn

• The null hypothesis is H0 : µX − µY = 0

• And the alternative hypothesis is H1 : µX − µY 6= 0

• We create a new variable Z = X −Y and run a one sample t-test on Z

• The t-statistic is

t =
Z̄
sZ√
n

where sZ is the sample standard deviation of Z



Example: Paired Samples t-test

Example. In Professor Chico’s class, students take two major tests, one
early in the semester and one later in the semester. Professor Chico runs
a very hard class, one that most students find very challenging. But
she argues that by setting hard assessments students are encouraged
to work harder. Her theory is that the first test is a bit of a “wake
up call” for students. When they realize how hard her class really is,
they’ll work harder for the second test and get a better grade. Is she
right? The data is contained in the file chico.csv.

• Perform a one-sample t-test on the difference variable

• Or use jamovi’s Paired Samples t-test from the T-Tests menu



Example: Paired Samples t-test

Example. Data was collected of the number of work hours lost to
accidents before and after a safety program was implemented in 10
factories. Use the 0.05 level of significance to test the claim that the
safety program was effective.

Before After
45 36
57 51
73 60
83 77
46 44
34 29

124 119
26 24
33 35
17 11



Example: Paired Samples t-test

• We need to use a paired samples t-test because the two samples are
not independent

• The variable of interest is then the difference between the two samples

• Let µ be the mean difference between the two samples, specifically,
µ = µafter − µbefore, where

• The null hypothesis is H0 : µ = 0

• The alternative hypothesis is H1 : µ < 0

• The t-statistic is

t =
x̄ − µ

(s/
√
n)

where x̄ is the sample mean of the difference variable, s is the sample
standard deviation of the difference variable, and n is the sample size

• The mean difference is computed to be x̄ = −5.20 and the sample
standard deviation is s = 4.08



Example: Paired Samples t-test

• The t-statistic is t = −4.03 and the p-value is p = 0.001

• The rejection region is t < −1.8331

• Since t < −1.8331 (or equivalently because p < α), we reject H0 and
conclude that there is statistically significant evidence that the safety
program was effective


