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Introduction

• Now that we have some knowledge in probability theory, we can begin
to think about the problem of statistical inference

• The main ideas that lie at the heart of inferential statistics are
traditionally divided into two “big ideas”:

• estimation

• hypothesis testing

• The goal in this chapter is to introduce the first of these big ideas,
estimation theory

• To that end, we need to first discuss sampling theory because
estimation theory doesn’t make sense until we understand sampling



Samples, populations, and sampling

• Sampling theory plays a huge role in specifying the assumptions upon
which your statistical inferences rely

• In order to talk about “making inferences”, we need to be a bit more
explicit about what it is that we’re drawing inferences from (the
sample) and what it is that we’re drawing inferences about (the
population)

• In almost every situation of interest what we have available to us as
researchers is a sample of data

• The data set available to us is finite and incomplete since we can’t
possibly observe the entire population of interest

• A sample was the only thing we were interested in when we covered
descriptive statistics

• Our only goal then was to find ways of describing, summarising and
graphing that sample



Defining a population

• A population is a set of similar items or events which is of interest for
some question or experiment

• The items can be a group of existing objects, for example, all registered
voters in a particular state, all existing stars in the Milky Way, or all
bears in Yellowstone National Park

• The items can also be hypothetical objects or events, for example, all
possible outcomes of a coin toss or the set of all possible hands of a
poker game

• A population can be a an abstract idea or a concrete collection of
objects, but regardless, it refers to all possible items/events of interest



Defining a population

• In many cases, it is not always perfectly clear what the population is

• Suppose we run an experiment using 100 undergraduate students

• The goal of the study is to learn something about human behaviour

• Possible populations include:

• All undergraduate students at SUNY Geneseo?

• Undergraduate liberal-arts students in general, anywhere in the
world?

• Americans currently living?

• Americans of similar ages to the sample?

• Anyone currently alive?

• Any human being, past, present or future?

• Any biological organism with a sufficient degree of intelligence
operating in a terrestrial environment?

• Any intelligent being?



Simple random samples

• The procedure by which a sample is selected from a population is
referred to as a sampling method

• A procedure in which every member of the population has the same
chance of being selected is called a simple random sample

• Simple random samples without replacement:



Simple random samples

• Biased sampling occurs when some members of a population are
systematically more likely to be selected in a sample than others:



Simple random samples

• In simple random samples with replacement, each member of the
population has the same chance of being selected, but once a member
is selected, it is returned to the population and can be selected again:



Simple random samples

• Most statistical theory is based on the assumption that the data arise
from a simple random sample with replacement

• In real life this very rarely matters if the population is large

• In this case, the difference between sampling with- and without-
replacement is too small to be concerned with



Simple random samples

• In some cases, it is impossible to obtain a simple random sample

• Many other sampling methods are available

• Stratified sampling - divide the population into groups (or strata) and
then randomly select a sample from each group; could lead to
oversampling because it may deliberately attempt to overrepresent
rare groups

• Snowball sampling - start with a small sample and then use that
sample to recruit more members of the population, very common in
social science research; a disadvantage is that the procedure can be
unethical if not handled well

• Convenience sampling - select a sample that is easy to obtain, for
example, by asking people to volunteer; generally non-random and can
lead to bias in the sample



Population parameters and sample statistics

• So what is a population to a statistician?

• To a statistician, which is what we are for the purposes of this course,
a population is represented by a probability distribution

• For example, suppose that we are interested in the IQ scores of all
students at a particular university

• IQ tests are designed to produce scores that are normally distributed
with a mean of µ = 100 and a standard deviation of σ = 15

• These values (µ and σ) are called the population parameters

• We then say that µ = 100 is the population mean and σ = 15 is the
population standard deviation

• As far as we are concerned, the population is completely defined by
these two parameters



Population parameters and sample statistics

• If we were to obtain a sample of 100 IQ scores from this population
and calculate the mean and standard deviation of the sample, we
would obtain values that are different from the population parameters

• For our hypothetical sample of 100 scores, we might obtain a sample
mean of X̄ = 98.5 and a sample standard deviation of s = 15.9

• These values are called sample statistics



The Law of Large Numbers

• In the IQ example, the sample mean was X̄ = 98.5

• This is close to the population mean of µ = 100 but what if we wanted
a sample mean that was closer to the population mean?

• The answer is that we need to increase the sample size

• Running a simulated experiment of sampling N = 10, 000 scores from
the population and calculating the sample mean and std, we obtain
X̄ = 99.65 and σ = 14.90



The Law of Large Numbers

• It is intuitively clear that large samples generally give you better
information about the population

• This intuition that we all share turns out to be correct, and
statisticians refer to it as the Law of Large Numbers

• The law of large numbers is a mathematical law that applies to many
different sample statistics (not just the mean) but the simplest way to
think about it is as a general law about averages

• When applied to the sample mean, the law of large numbers states
that as the sample size N tends to infinity (N →∞), the sample mean
X̄ will tend to the population mean µ (X̄ → µ)



Sampling distributions

• The law of large numbers is a “long-run guarantee” that in practice is
not all that useful because we rarely have access to large samples

• In real life, it would be more useful to be able to learn the behaviour of
a sample statistic when it is calculated from a modest sized sample

• This is where sampling distributions come in

• Suppose instead that we can only measure the IQ scores of N = 5
individuals and we obtain the numbers

90, 82, 94, 99, 110

• The sample mean is X̄ = (90 + 82 + 94 + 99 + 110)/5 = 95

• Not surpisingly, this is much less accurate than the sample mean with
N = 10, 000 or even N = 100

• Now suppose that we replicate this experiment and measure the IQ
scores of another N = 5 individuals, and then repeatedly



Sampling distributions

• After performing this experiment 10 times we obtain the following data:

1 2 3 4 5 Sample Mean
Replication 1 90 82 94 99 110 95.0
Replication 2 78 88 111 111 117 101.0
Replication 3 111 122 91 98 86 101.6
Replication 4 98 96 119 99 107 103.8
Replication 5 105 113 103 103 98 104.4
Replication 6 81 89 93 85 114 92.4
Replication 7 100 93 108 98 133 106.4
Replication 8 107 100 105 117 85 102.8
Replication 9 86 119 108 73 116 100.4
Replication 10 95 126 112 120 76 105.8

• If we replicated this experiment even further, we would obtain the data
points of sample means:

95.0, 101.0, 101.6, 103.8, 104.4, 92.4, 106.4, 102.8, 100.4, 105.8, . . .



Sampling distributions

• Here is a histogram of the sample means from the replications:

• The average of 5 IQ scores is usually between 80 and 120



Sampling distributions

• This experiment is an example of a sampling distribution

• Specifically, this distribution is called the sampling distribution of the
mean

• Sampling distributions exist for any sample statistic and not just the
mean

• For example, the sampling distribution of the median is the distribution
of medians obtained from all possible samples of certain size N

• Or, the sampling distribution of the maximum is the distribution of
maximums obtained from all possible samples of certain size N

• We do not intend to actually perform repeated experiments and build a
histogram of the sample means

• Instead, we will use the theoretical properties of sampling distributions
to learn about the behaviour of the sample statistic



Sampling distributions

• The sampling distribution of the mean as the sample size varies:

• As the sampling size increases, the distribution of sample means tend
to be fairly tightly clustered around the true population mean



The Central Limit Theorem

• As the sample size increases, the standard deviation of the sampling
distribution of the mean decreases

• The standard deviation of the sampling distribution is referred to as the
standard error, often denoted as SE

• The standard error of the sample mean is often denoted by SEM

• Notice that the sampling distribution of the mean looks very much like
a normal distribution

• This is not surprising because IQ scores are normally distributed

• What if the population is not normally distributed?

• The remarkable thing is that no matter what shape your population
distribution is, as N increases, the sampling distribution of the mean
starts to look more like a normal distribution!



The Central Limit Theorem



The Central Limit Theorem

• It seems like we have evidence for all of the following claims about the
sampling distribution of the mean:
• The mean of the sampling distribution is the same as the mean of

the population
• The standard deviation of the sampling distribution (i.e., the

standard error) gets smaller as the sample size increases
• The shape of the sampling distribution becomes normal as the

sample size increases

• These facts are summarized in what is called the Central Limit
Theorem (CLT)

• The CLT tells us that if the population distribution has mean µ and
standard deviation σ, then the sampling distribution of the mean also
has mean µ, and the standard error of the mean is

SEM =
σ√
N



The Central Limit Theorem

• From the formula for the standard error of the mean

SEM =
σ√
N

we observe that as N increases, the standard error of the mean
decreases

• The CLT also tells us that the shape of the sampling distribution
becomes normal

• This is one reason why the normal distribution is so important in
statistics

• Many experiments measure a characteristic that is a sort of average
value of a population and so the distribution of many random variables
are approximately normal distributed

• For example, IQ scores can be thought of as an average of many
different abilities and so IQ scores are approximately normally
distributed



The Central Limit Theorem

• Links to online resources on the Central Limit Theorem:

• Webassign: The Sampling Distribution

• Skew the Script: Sampling Distribution for a Mean

https://www.webassign.net/resources/aswsbe13/ExploringStatisticsApplets/07_sampling_hist.html
https://skewthescript.org/6-4


Estimating population paramters

• Suppose that we are interested in estimating the mean IQ µ of a
certain population

• 100 individuals from the population are randomly selected and their IQ
scores are measured; the mean IQ of the sample is X̄ = 98.5

• It is sensible to use the sample mean X̄ as an estimate of the
population mean µ

• Our estimate for the mean µ is then µ̂ = 98.5

• The hat notation is used to indicate that the quantity is an estimate

Symbol What is it? Do we know what it is?

X̄ Sample mean Yes, calculated from the raw data

µ True population mean Almost never known for sure

µ̂ Estimate of µ Yes, identical to the sample mean



Estimating the population standard deviation

• If σ is the population standard deviation, we use σ̂ to denote an
estimate for σ

• Following what we did to estimate µ, it seems reasonable to use the
sample standard deviation s as an estimate of σ

• Recall that the variance s2 is given by

s2 =
1

N

N∑
i=1

(Xi − X̄ )2

• It turns out that using s as an estimate of σ is not a good idea; in fact
s is a biased estimator of σ

• Generally, if θ̂ is an estimator of θ, then θ̂ is unbiased if the sampling
distribution of θ̂ is centered at θ

• The sampling distribution of X̄ is centered at µ and so X̄ is an
unbiased estimator of µ



Estimating the population standard deviation

• It turns out that the sampling distribution of the variance s2 is
centered at

N − 1

N
σ2

• Thus, the sample variance s2 is a biased estimator of σ2

• On the other hand, the sampling distribution of the estimator

σ̂2 =
1

N − 1

N∑
i=1

(Xi − X̄ )2

is centered at σ2

• Therefore, an improved estimator of σ is

σ̂ =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̄ )2

• Many people refer to σ̂ as the sample standard deviation



Estimating the population standard deviation

Sampling distribution of s for N = 2 centered at 8.5; σ = 15



Estimating the population standard deviation

• (a) The sample mean is an unbiased estimator of the population mean;
(b) The sample standard deviation is a biased estimator of the
population standard deviation



Estimating population parameters

Symbol What is it? Do we know what it is?

s Sample standard deviation Yes, calculated from the raw data

σ Population standard deviation Almost never known for sure

σ̂ Estimate of the population Yes, but not the same as the
standard deviation sample standard deviation

Symbol What is it? Do we know what it is?

s2 Sample variance Yes, calculated from the raw data

σ2 Population variance Almost never known for sure

σ̂2 Estimate of the population Yes, but not the same as the
variance sample variance



The standard normal distribution N(0, 1)

• We now describe how to quantify the amount of uncertainty that
attaches to our estimates

• For this we use the CTL and the standard normal distribution

• The standard normal distribution is the normal distribution with mean
µ = 0 and standard deviation σ = 1



The standard normal distribution N(0, 1)

• There is a 100(1−α)% probability that Z lies between −zα/2 and zα/2:

P(−zα/2 ≤ Z ≤ zα/2) = 1− α

• For α = 0.05, zα/2 = 1.96 =⇒ P(−1.96 ≤ Z ≤ 1.96) = 0.95



Estimating a confidence interval for µ

• Let’s return to describing how to quantify the amount of uncertainty
that attaches to our estimates

• For example, it would be nice to be able to say that there is a 95%
chance that the true mean µ lies between 109 and 121

• The name for this is a confidence interval for the mean

• Suppose that the true mean and standard deviation of a population are
µ and σ

• If we gather a random sample of size N ≥ 30, the sampling distribution
of X̄ is approximately normal with mean µ and standard deviation
SEM = σ/

√
N

• Therefore, the random variable

Z =
X̄ − µ
SEM

has (approximately) a standard normal distribution: Z ∼ N(0, 1)



Estimating a confidence interval for µ

• Therefore, there is a 100(1− α)% probability that Z lies between
−zα/2 and zα/2:

−zα/2 ≤ Z ≤ zα/2

• After some algebraic manipulations, we get:

−zα/2 ≤
X̄ − µ
SEM

≤ zα/2

• After some algebraic manipulations, we get:

X̄ − (zα/2 · SEM) ≤ µ ≤ X̄ + (zα/2 · SEM)

• The interval X̄ ± (zα/2 · SEM) is called a 100(1− α)% confidence
interval for µ

• The term E = zα/2 · SEM is called the margin of error or just error

• As an example, the 95% confidence interval is

X̄ ± (1.96 · SEM)



Interpreting a confidence interval

• We need to be careful how we interpret a confidence interval

• A confidence interval is not a prediction; we are not saying that the
true mean µ lies in X̄ ± (1.96 · SEM) with 95% probability

• This interpretation is not consistent with the frequentist interpretation
of probability

• Instead, we are saying that if we were to gather many random samples
of size N from the population, and construct a 95% confidence interval
for µ in each case, then 95% of the intervals would contain µ

• To say that we are 95% confident that the unknown µ lies in the
interval X̄ ± (1.96 · SEM) is to say that “We got these numbers using
a method that gives correct results 95% of the time”

• We don’t know whether the 95% confidence interval from a particular
sample is one of the 95% that capture µ or one of the unlucky 5% that
miss



Estimating a confidence interval for µ



Estimating confidence intervals in general

• The procedure described above can be used to construct confidence
intervals for any population parameter θ and not just µ

• One main assumption in our procedure was that the sampling
distribution for the point estimate be reasonably modeled as normal

• Then, a 100(1− α)% confidence interval for the unknown parameter θ
can be constructed as

θ̂ ± (zα/2 · SE (θ̂))

where SE (θ̂) is the standard error of the point estimate θ̂

• A 95% confidence interval for θ is θ̂ ± (1.96 · SE (θ̂))

• A 99% confidence interval for θ is θ̂ ± (2.58 · SE (θ̂))

• (1−α) is called the confidence level, zα/2 is called the critical value,

and the margin of error zα/2 · SE (θ̂)



Example: Confidence interval for µ

Example. A simple random sample (SRS) of n = 74 observations
produced a sample mean of x̄ = 110.73 from a population known to
have a standard deviation of σ = 11. Find a 95% confidence interval
for the population mean µ.

• The z-value for a 95% confidence interval is z = 1.96

• The standard error is SE = σ/
√
n = 11/

√
74 = 1.27872

• The error is E = z · SE = 1.96 · 1.27872 = 2.506299

• The confidence interval is then

x̄ ± E = 110.73± 2.506299 = (108.22, 113.24)

• We are 95% confident that the true mean µ lies in the interval
(108.22, 113.24)



Example: Confidence interval for µ

Example. A simple random sample (SRS) of n = 64 observations
produced a sample mean of x̄ = 33 from a population known to have a
variance of σ2 = 256. Find a 90% confidence interval for the population
mean µ.

• The z-value for a 90% confidence interval is z = 1.645

• The standard error is SE = σ/
√
n =
√

256/
√

64 = 2

• The error is E = z · SE = 1.645 · 2 = 3.29

• The confidence interval is then

x̄ ± E = 33± 3.29 = (29.71, 36.29)

• Our estimate for the mean is µ̂ = 33 and we are 90% confident that
the true mean µ lies in the interval (29.71, 36.29)



Sample size for a confidence interval

• From the margin of error formula

E = z · σ√
n

we can solve for n to get

n =
[z · σ

E

]2
• This can be used to determine the sample size needed to achieve a

desired margin of error E



Example: Sample size for a confidence interval

Example. The registrar’s office wants to estimate the average amount
of time it takes students to walk from one class to the next. They
want to be 95% confident that the true average is within 0.3 minutes
of the sample mean. The standard deviation of the population is 1.5
minutes. How many students should be surveyed?

• We are given that σ = 1.5 and E = 0.3

• The critical value for a 95% confidence interval is z = 1.96

• The sample size needed is then

n =
[z · σ

E

]2
=

[
1.96 · 1.5

0.3

]2
= 96.04

• We round up to n = 97



Binomial Distribution Revisited

• Suppose that the probability of success of a single experiment (or trial)
is θ

• Then if X denotes the number of successes in n trials, then X has a
binomial distribution with parameters n and θ:

X ∼ B(n, θ)

• Problems involving proportions are often modeled using the binomial
distribution

• For example, suppose that we want to estimate the proportion of
people who like a particular brand of soft drink

• We could randomly select a sample of n people and ask them if they
like the soft drink

• If X denotes the number of people who like the soft drink, then X has
a binomial distribution with parameters n and θ



Binomial Distribution Revisited

• When dealing with proportions, it is often convenient to use the
notation p instead of θ to denote the probability of success in a single
trial

• The mean of a binomial distribution B(n, p) is

µ = np

• And the standard deviation is

σ =
√
np(1− p)

• We often write q = (1− p) and then σ =
√
npq

• q is then the probability of failure in a single trial



The binomial distribution: θ = 0.2, N = 20



Proportions

• A random variable X that has a binomial distribution B(n, p) can be
thought of as the sum of n independent random variables
X1,X2, . . . ,Xn

• Each random variable Xi is the result of a single trial and has
probability distribution:

Event Probability

1 (success) P(Xi = 1) = p

0 (failure) P(Xi = 0) = 1− p

• Thus X = X1 + X2 + · · ·+ Xn

• Let Y = 1
nX be the proportion of successes in n trials

• Then Y is a random variable with parameters µ = p and

σ =
√
pq =

√
p(1− p)



Proportions

• By the Central Limit Theorem, Y can be approximated by a normal
distribution with mean µ = p and standard deviation

σ√
n

=

√
p(1− p)√

n
=

√
p(1− p)

n

• In this case, the standard error is called the standard error of the
proportion:

SE =

√
p(1− p)

n

• We can now proceed as before to find confidence intervals for the
population mean µ = p

• The estimator for p is the sample proportion p̂ = X
n

• The 100(1− α)% confidence interval for p is then

p̂ ± zα/2 · SE = p̂ ± zα/2 ·
√

p̂(1− p̂)

n



Example: Confidence interval for a proportion

Example. A random sample of 400 students is selected. Of these
students, 136 like the new cafeteria food. Construct a 95% confidence
interval for the proportion of students who like the new cafeteria food.

• We are given that n = 400 and X = 136

• The sample proportion is p̂ = X
n = 0.34

• The critical value for a 95% confidence interval is z = 1.96

• The error is

E = z ·
√

p̂(1− p̂)

n
= 1.96 ·

√
0.34(1− 0.34)

400
= 0.046423

• The 95% confidence interval is then

p̂ ± E = 0.34± 0.046423 = (0.294, 0.386)



Sample size for a Proportion

• From the margin of error formula

E = z ·
√

p̂(1− p̂)

n

we can solve for n to find the sample size needed to achieve a given
margin of error E

• Solving for n gives

n = p̂(1− p̂)
[ z
E

]2
• To use this formula we need a value for p̂ which involves obtaining a

sample!

• There are two ways to proceed:

• If we know a range of values of the true proportion p then we
choose p closest to 0.5

• If p is completely unknown, then we choose p = 0.5



Example: Sample size for a Proportion

Example. A survey is to be conducted to determine the proportion of
students who like the new cafeteria food. It is desired to estimate the
proportion with a 95% confidence level. The margin of error is to be
no more than 0.04. How large a sample is needed if

• p is known to be between 0.1 and 0.25;

• p is completely unknown?

• We are given that E = 0.04 and z = 1.96

• If p is known to be between 0.1 and 0.25, then we choose p = 0.25
and compute

n = 0.25(1− 0.25)

[
1.96

0.04

]2
≈ 451

• If p is completely unknown, then we choose p = 0.5 and compute

n = 0.5(1− 0.5)

[
1.96

0.04

]2
≈ 601


