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Chapter Goal

• The goal in this chapter is to introduce correlation and linear regression

• These are the standard tools that statisticians rely on when analysing
the relationship between continuous predictors and continuous
outcomes



A Motivating Example: Parenthood

• Suppose that my name is Daniel and I’m a sleep-deprived parent

• Suppose that I’m curious to find out how much my infant son’s
sleeping habits affect my mood (I don’t have an infant son, but let’s
pretend that I do)

• Let’s say that I can rate my grumpiness very precisely, on a scale from
0 (not at all grumpy) to 100 (very very grumpy)

• And lets also assume that I’ve been measuring my grumpiness, my
sleeping patterns and my son’s sleeping patterns for the last 100 days

• I’ve recorded the data and saved it in the file parenthood.csv

• The variables in the data set are:
• dani.sleep - the number of hours of sleep that I got
• baby.sleep - the number of hours of sleep that my son got
• dani.grump - my grumpiness rating (0-100)
• day (the day of the observation)
• ID (the ID of the observation)



A Motivating Example: Parenthood

• Although I’m interested in finding out how my son’s sleeping habits
affect my mood, I’m also interested in finding out how my own
sleeping habits affect my mood

• However, my mood may also affect my sleeping habits

• Thus, it is not always clear which variable is the true cause and which
is the effect

• But I’m interested in how my son’s sleep (or mine) affects my mood,
not the other way around

• I would then call my son’s sleep (or mine) the predictor variable and
my mood the outcome variable

• A predictor variable is also called an independent variable and an
outcome variable is also called a dependent variable

• Predictor variables are usually denoted by X and outcome variables by
Y



A Motivating Example: Parenthood

• A quick way to learn about the relationship between two variables is to
plot them

• A scatterplot is a plot of the outcome variable on the y -axis (vertical
axis) and the predictor variable on the x-axis (horizontal axis)

• In jamovi, there is a module called scatr that can be used to create
scatterplots

• In the Analyses menu, you can install a module by clicking on the
large + sign



A Motivating Example: Parenthood

• In both plots, we observe that more sleep equals less grumpiness

• The relationship between dani.sleep and dani.grump is stronger than
the relationship between baby.sleep and dani.grump



A Motivating Example: Parenthood

• The overall strength of the relationships “baby.sleep vs dani.grump”
and “baby.sleep vs dani.sleep” are the same but the directions are
different

• The relationship on the left is said to be a negative relationship and
the relationship on the right is said to be a positive relationship



Correlation Coefficient

• A quantitative measure of the strength of the relationship between two
variables is Pearson’s correlation coefficient or just the correlation
coefficient, denoted by r

• r varies between -1 and 1

• When r = −1 the relationship is said to be a perfect negative
relationship

• When r = 1 the relationship is said to be a perfect positive
relationship

• When r = 0 we say that the variables are uncorrelated or that there is
no relationship between the variables



Correlation Coefficient



Correlation Coefficient

• To compute the correlation coefficient we first introduce the
covariance between two variables X and Y

• The covariance between X and Y is denoted by cov(X ,Y ) and is
defined as

cov(X ,Y ) =
1

n − 1

n∑
i=1

(Xi − X̄ )(Yi − Ȳ )

• The covariance between X and Y is a measure of the joint variability
of the two variables

• If the greater values of one variable mainly correspond with the greater
values of the other variable, and the same holds for the lesser values
(that is, the variables tend to show similar behavior), the covariance is
positive

• In the opposite case, when the greater values of one variable mainly
correspond to the lesser values of the other, (that is, the variables tend
to show opposite behavior), the covariance is negative



Correlation Coefficient

• The covariance between two variables X and Y is a generalisation of
the notion of the variance of one random variable

• Notice that

var(X ) = cov(X ,X ) =
1

n − 1

n∑
i=1

(Xi − X̄ )2

• By itself, the covariance is difficult to interpret since the units of
cov(X ,Y ) are the product of the units of X and Y

• To get a more useful standardized measure, we divide the covariance by
the standard deviations of X and Y to get the correlation coefficient

r =
cov(X ,Y )

σXσY

• In jamovi, use the Correlation Matrix in the Regression submenu
under the Analyses menu to compute the correlation coefficient
between any number of variables



Anscombe’s Quartet Scatterplots: r = 0.816

Francis Anscombe (1973)



Linear Regression Models

• Aside from the correlation coefficient, another way to quantify the
relationship between variables is to fit a linear regression model

• A linear regression model between variables is a model that assumes
that the relationship between the variables is linear

• The basic idea on how to build a linear regression model between X
and Y is to find the line that best fits the data

• Recall that the equation of a line is given by

Y = β0 + β1X

where β1 is the slope of the line and β0 is the y -intercept of the line

• When β1 < 0 the line has a negative slope and for every unit increase
in X the line decreases by β1 units

• When β1 > 0 the line has a positive slope and for every unit increase in
X the line increases by β1 units



Linear Regression Models

• To find the line Y = β0 + β1X of best fit, we proceed as follows

• We are given the observations (X1,Y1), (X2,Y2), . . . , (Xn,Yn)

• Whatever value of β0 and β1 we choose, we can compute the predicted
value Ŷi for each observation Xi as

Ŷi = β0 + β1Xi

• The error or residual between the observed value Yi and the predicted
value Ŷi is given by

ei = Yi − Ŷi

• We want to find β0 and β1 such that the sum of the squared errors is
minimized

SS =
n∑

i=1

e2
i =

n∑
i=1

(Yi − Ŷi )
2



Linear Regression Models

• Using some calculus, it can be shown that the values of β0 and β1 that
minimize SS are given by

β̂1 =
cov(x , y)

var(x)

β̂0 = ȳ − β̂1x̄

• Later we’ll talk about why we are using hat notation for β̂0 and β̂1

• Recall that r = cov(x,y)
sx sy

and thus if r is known then

cov(x , y) = r · σx · σy

• In practice, we will use the sample standard deviations sx and sy to
estimate the population standard deviations σx and σy



Linear Regression Models: Parenthood Example

• To compute and graph a regression line for a data set, use the
Regression submenu in the Analyses menu in jamovi

• Using dan.grump as the outcome variable and dan.sleep as the
predictor variable (covariate) we find that

Ŷ = β0 + β1X

= 125.96− 8.94x



Linear Regression Models: Parenthood Example

Ŷ = 125.96− 8.94X



Multiple Linear Regression Models

• Let’s go back to the example of the parenthood data set

• My mood may be affected both by the amount of sleep that I get and
the amount of my son’s sleep

• More generally, the outcome variable Y may be affected by several
predictor variables X1,X2, . . . ,Xk

• In this case we can use a multiple linear regression model to model
the relationship between the outcome variable Y and the predictor
variables X1,X2, . . . ,Xk

• For example, if X1 denotes the amount of hours I sleep, X2 the amount
of hours my son sleeps, and Y denotes my grumpiness rating, the
multiple linear regression model is given by

Ŷ = β0 + β1X1 + β2X2

• On the ith day, my grumpiness is predicted to be

Ŷi = β0 + β1X1i + β2X2i



Multiple Linear Regression Models

• As before, the residual associated with the actual ith observation Yi is

ei = Yi − Ŷi

• And the sum of the squared errors is

SS =
n∑

i=1

e2
i =

n∑
i=1

(Yi − Ŷi )
2

• In the parenthood model, we need to find the values of β0, β1, β2 that
minimize the sum of the squared errors

• Multiple linear regression is conceptually the same as simple linear
regression but we we just have more variables

• Multiple regression in jamovi is no different to simple regression; all
we have to do is add additional variables to the Covariates box



Quantifying the Fit of the Regression Model: R2

• We now need to quantify how good the regression model is

• This is done using the coefficient of determination R2 given by

R2 =
SStot − SS

SStot
= 1− SS

SStot

• Where SS is the sum of the squared residuals and SStot is the total
variation in the outcome variable Y :

SS =
n∑

i=1

(Yi − Ŷi )
2

SStot =
n∑

i=1

(Yi − Ȳ )2

• R2 measures the proportion of the variance in Y that is predicted by
the regression model



Quantifying the Fit of the Regression Model: R2

• From

R2 = 1− SS

SStot
= 1−

∑n
i=1(Yi − Ŷi )

2∑n
i=1(Yi − Ȳ )2

we can make the following observations

• A baseline model that always predicts the mean of Y , that is Ŷi = Ȳ ,
has SS = SStot and then R2 = 0

• If the regression model is a perfect fit, meaning that Ŷi = Yi , then
SS = 0 and R2 = 1

• The closer R2 is to 1, the better the regression model fits the data

• When there is only one predictor variable, R2 = r2 where r is the
correlation coefficient between the predictor variable and the outcome
variable



Significance of the Correlation Coefficient

• Recall that the correlation coefficient r is a measure of the strength
and direction of the linear relationship between two variables

• We can perform a hypothesis test of the “significance of the correlation
coefficient” to decide whether the linear relationship in the sample data
is strong enough to use to model the relationship in the population

• Denote by ρ the true correlation coefficient in the population, which is
unknown

• The null hypothesis is that the correlation coefficient in the population
is zero, that is, there is no significant linear relationship between the
two variables in the population:

H0 : ρ = 0

• The alternative hypothesis is that the correlation coefficient in the
population is not zero:

H1 : ρ 6= 0



Significance of the Correlation Coefficient

• We perform a two-sided test using the test statistics is

t =
r
√
n − 2√

1− r2

• This test statistic follows a t-distribution with n− 2 degrees of freedom
for simple linear regression

• If we reject the null hypothesis that ρ = 0 we conclude that there is a
significant linear relationship between the two variables in the
population

• If we fail to reject the null hypothesis that ρ = 0 we conclude that
there is a significant linear relationship between the two variables in the
population



Regression Analysis

• We now want to answer the following type of questions:
• How good are the estimated values of β0 and β1 in a linear

regression model y = β0 + β1x?
• How good is the estimate ŷ of y using a linear regression model?

• The values of β0 and β1 are obtained using sample data and as such
they are random variables

• In other words, if we were to take another sample, we would get
different values of β0 and β1

• Similarly when estimating y using ŷ = β0 + β1x , we get a different
value of ŷ for each sample

• To distinguish between the true values of β0 and β1 and the estimated
values, we denote the true values by β0 and β1 and the estimated
values by β̂0 and β̂1

• Similarly, we denote the estimated value of y by ŷ :

ŷ = β̂0 + β̂1x



Regression Analysis: The True Regression Line

• When we first introduced the linear regression problem, we casted it as
a problem of finding the line that best fits the data

• However, the idea of linear regression is that for each fixed value of x
we have a random variable Y that follows some probability distribution
and that the mean of Y is given by

µ(Y ) = β0 + β1x

• For example, if x denotes the square footage of a house and Y denotes
the sell price of the house, then µ(Y ) is the average sell price of a
house with square footage x

• We do not expect that every house with square footage x will sell for
the same price, that is, there will be some variability in the sell price of
houses with square footage exactly x



Regression Analysis: The True Regression Line

Source: https://www2.stat.duke.edu/courses/Fall19/sta210.001/

• The mean of Y for each value of x is given by the true regression line

• We assume that each distribution of Y has the same standard
deviation σ

• When finding the line that best fits the data, we find estimates β̂0 and
β̂1 of β0 and β1 and ŷ = β̂0 + β̂1x is the estimated regression line



Regression Analysis: Coefficients

• One can prove that the estimators β̂0 and β̂1 obtained from minimizing
SS are unbiased estimators of β0 and β1, respectively

• Assuming that each Y has normal distribution with standard deviation
σ, the standard deviations of β̂0 and β̂1 are given by

σβ̂0
= σ

√
1

n
+

x̄2

Sxx
and σβ̂1

=
σ√
Sxx

• Where

Sxx = (n − 1)s2
x = (n − 1)var(x)



Regression Analysis: Coefficients

• In practice, we will not know the true value of σ and we will have to
estimate it using an ubiased estimatore

• In this case, this estimator is given by

se =

√
Syy − β̂1Sxy

n − 2

and called the standard error of the estimate

• Where

Syy = (n − 1)var(y)

Sxy = (n − 1)cov(x , y)

• As before if r is known then

cov(x , y) = r · σx · σy



Regression Analysis: Coefficients

• Now that we have the standard deviations of β̂0 and β̂1, we now need a
statistic to make inferences on β0 and β1

• To make statistical inferences on β0 we use the following statistics:

t =
β̂0 − β0

σβ̂0

=
β̂0 − β0

se

√
1
n + x̄2

Sxx

• And for β1 we use

t =
β̂1 − β1

σβ̂1

=
β̂1 − β1

(se/
√
Sxx)

• Both of these statistics follow a t-distribution with n − 2 degrees of
freedom

• In practice, the intercept β0 is not of much interest, especially if x = 0
is not a meaningful value

• We are more interested in making inferences on β1



Confidence Intervals for the Coefficients

• Recall that the general form of a confidence interval using the
t-distribution is

θ̂ ± tα/2 · SE (θ̂)

• Therefore, the confidence interval for β1 is given by

β̂1 ± tα/2 · σβ̂1

or equivalently

β̂1 ± tα/2 ·
se√
Sxx

• And the confidence interval for β0 is given by

β̂0 ± tα/2 · σβ̂0

or equivalently

β̂0 ± tα/2 · se

√
1

n
+

x̄2

Sxx



Example: Inferences on the Regression Coefficients

Example. For the data given below, find the regression line y = β0+βx
and find a 95% confidence interval for the slope of the line. Then test
the hypothesis that β1 = 0 versus β1 6= 0.

x = (47, 56, 116, 178, 19, 75, 160, 31, 12, 164, 43, 74)

y = (15.1, 14.1, 13.2, 12.7, 14.6, 13.8, 11.9, 14.8, 15.3, 12.6, 14.7, 14.0)

• Using jamovi we obtain the following:

x̄ = 81.3, ȳ = 13.9, var(x) = 3471, var(y) = 1.18, r = −0.948

• From these we can compute

cov(x , y) = −60.67 SXX = 38181 SYY = 13 SXY = −667

• The coefficients are

β̂1 = −0.0175 and β̂0 = 15.3



Example: Inferences on the Regression Coefficients

• To compute the standard error of β̂1 we need to compute se :

se =

√
SYY − β̂1SXY

n − 2
= 0.36

• Then
σβ̂1

=
se√
SXX

= 0.00186

• The critical value for a 95% confidence interval is tα/2 = 2.228

• The confidence interval is:

β̂1 ± tα/2 · σβ̂1
= −0.0175± 2.228 · 0.00186 = (−0.022,−0.013)

• Compare this with the answer obtained by jamovi



Example: Inferences on the Regression Coefficients

• We now test the null hypothesis that β1 = 0 against the alternative
hypothesis that β1 6= 0:

H0 : β1 = 0

H1 : β1 6= 0

• The test statistic is

t =
β̂1 − β1

σβ̂1

=
−0.0175− 0

0.00186
= −9.4

• Using the t-distribution with n − 2 = 10 degrees of freedom, the
p-value is too small to report

• However, t = −9.4 lies outside the rejection region
{t < 2.228 or t > 2.228} and thus we reject the null hypothesis
that β1 = 0

• In other words, there is statistical evidence supporting that x and y are
linearly related



Predictions for The Mean Response

• We now consider the problem of estimating the mean value of y for a
given value of x0

• The estimated mean outcome is given by

ŷ = β̂0 + β̂1x0

• The (1− α)100% confidence interval for the mean outcome is

ŷ ± tα/2 · se

√
1

n
+

(x0 − x̄)2

Sxx

• Where as before, se =
√

SYY−β̂1SXY

n−2

• And tα/2 is the critical value for the t-distribution with n − 2 degrees
of freedom



Predictions for New Observations

• We now consider the problem of predicting the response y for a new
observation with x = x0

• This is different than estimating the mean response for a given value of
x0

• In this case, the (1− α)100% prediction interval is

ŷ ± tα/2 · se

√
1 +

1

n
+

(x0 − x̄)2

Sxx

• Notice that the only difference between the prediction interval and the
confidence interval is the extra term 1 under the square root

• This term accounts for the uncertainty in the estimate of the mean
response and the uncertainty in the prediction of a new observation

• Not surprisingly, the prediction interval is wider than the confidence
interval



Example: Predictions for The Mean Response

Example. For the data given below, find the regression line y =
β0 + β1x .

• Find a 95% confidence interval for the mean response of y when
x = 1.

• Find a 95% prediction interval for a new observation with x = 2.

x = (−2,−1, 0, 1, 2)

y = (0, 0, 1, 1, 3)

• We compute that x̄ = 0 and ȳ = 1

• Then Sxx = 10, Syy = 6, and Sxy = 7

• Then

β̂1 =
Sxy
Sxx

=
7

10
= 0.7 and β̂0 = ȳ − β̂1x̄ = 1− 0 = 1

• The regression line is y = 1 + 0.7x

• The estimated mean response at x = 1 is then ŷ = 1.7



Example: Predictions for The Mean Response

• Recall that the (1− α)100% confidence interval for the mean response
is

ŷ ± tα/2 · se

√
1

n
+

(x0 − x̄)2

Sxx

• We compute that

se =

√
Syy − β̂1Sxy

n − 2
=

√
6− 0.7 · 7

5− 2
= 0.6055

• And √
1

n
+

(x0 − x̄)2

Sxx
=

√
1

5
+

(1− 0)2

10
= 0.5477

• The critical value for the t-distribution with n − 2 = 3 degrees of
freedom and α/2 = 0.025 is tα/2 = 3.182



Example: Predictions for The Mean Response

• The 95% confidence interval for the mean response is then

ŷ ± tα/2 · se

√
1

n
+

(x0 − x̄)2

Sxx
= 1.7± 3.182 · 0.6055 · 0.5477

= (0.645, 2.755)

• For the prediction interval, we need to compute√
1 +

1

n
+

(x0 − x̄)2

Sxx
=

√
1 +

1

5
+

(2− 0)2

10
= 1.2649

• In this case, ŷ = β0 + β1 × 2 = 2.4



• The CI for the predicted response is therefore

ŷ ± tα/2 · se

√
1 +

1

n
+

(x0 − x̄)2

Sxx
= 2.4± 3.182 · 0.6055 · 1.2649

= (−0.7372, 4.1372)

• The intervals are pretty wide but only five data points were used



Summary of Formulas

β̂1 =
cov(x , y)

var(x)
=

Sxy
Sxx

β̂0 = ȳ − β̂1x̄

Sxx = (n − 1)var(x)

Syy = (n − 1)var(y)

Sxy = (n − 1)cov(x , y)

cov(x , y) = r · sx · sy

ŷ ± tα/2 · se

√
1

n
+

(x0 − x̄)2

Sxx

ŷ ± tα/2 · se

√
1 +

1

n
+

(x0 − x̄)2

Sxx

t =
β̂1 − β1

σβ̂1

t =
β̂0 − β0

σβ̂0

σβ̂1
=

se√
Sxx

σβ̂0
= se

√
1

n
+

x̄2

Sxx

se =

√
Syy − β̂1Sxy

n − 2


