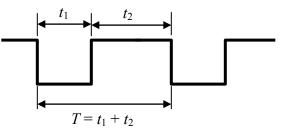


Restrictions:

$$C \ge 500 \text{ pF} = 500 \times 10^{-12} \text{ F}$$

 $R_A \ge 1 \text{ k}\Omega = 1000 \Omega$
 $R_A + R_B \le 6.6 \text{ M}\Omega = 6.6 \times 10^6 \Omega$


Results:

$$t_1 = 0.693R_BC$$

$$t_2 = 0.693(R_A + R_B)C$$

$$T = 0.693(R_A + 2R_B)C$$

$$f = \frac{1}{T} = \frac{1.443}{(R_A + 2R_B)C}$$

Example: We want T = 1s (f = 1Hz).

Try $R_{\rm B}$ = 1M Ω , and C = 0.47 μ F.

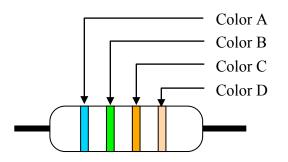
Then $t_1 = 0.3257$ s, and need $R_A = 1.07 M\Omega$.

The closest R we have to this is $R_B = 1M\Omega$.

So, the actual T = 0.977 s.

By itself, the 555 timer can *never* generate a pulse train with a 50% duty cycle. However, if you connect the output to the CLK of a toggling JK flip-flop, the flip flop output will be a pulse train with a 50% duty cycle and half the frequency of the 555 timer.

Q from 555


$$f = \frac{1}{2}f_{555}$$

DC = 50%

Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

Determining Resistor Values

output:

Color D is usually silver or gold, and indicates how close the actual resistance will be to the expected value. This is usually not impressive (5% or 10%).

$$R = (10A + B) \times 10^{C} \Omega$$

Examples: (Colors given in order A, B, and C):

Blue Green Orange: $R = (10 \cdot 6 + 5) \times 10^3 \Omega = 65000\Omega = 65 kΩ$

Blue Blue Violet: $R = (10 \cdot 6 + 6) \times 10^7 \Omega = 660000000\Omega = 660 \text{ M}\Omega$

Brown Black Red: $R = (10 \cdot 1 + 0) \times 10^2 \Omega = 1000 \Omega$