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Financial Market Risk

What is financial market risk? How is it measured and analyzed? Is all financial
market risk dangerous? If not, which risk is hedgeable?

These questions, and more, are answered in this comprehensive book written
by Cornelis A. Los. The text covers such issues as:

• competing financial market hypotheses;
• degree of persistence of financial market risk;
• time–frequency and time–scale analysis of financial market risk;
• chaos and other nonunique equilibrium processes;
• consequences for term structure analysis.

This important book challenges the conventional statistical ergodicity paradigm
of global financial market risk analysis. As such it will be of great interest to
students, academics and researchers involved in financial economics, international
finance and business. It will also appeal to professionals in international banking
institutions.

Cornelis A. Los is Associate Professor of Finance at Kent State University, USA.
In the past he has been a Senior Economist of the Federal Reserve Bank of
New York and Nomura Research Institute (America), Inc., and Chief Economist
of ING Bank, New York. He has also been a Professor of Finance at Nanyang
Technological University in Singapore and at Adelaide and Deakin Universities in
Australia. His PhD is from Columbia University in the City of New York.
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water flow changes like white noise (Whitcher et al., 2002). In other words, the
Rhine river tends to produce no major catastrophic floods.

The ACF of the fractionally-differenced time series can now be written in terms
of the H -exponent, since we can now substitute d = H − 0.5 into the previously
defined ACF to get:

γ (τ) = σ 2
ε �(2− 2H)�(τ +H − 0.5)

�(H − 0.5)�(1.5−H)�(τ + 1.5−H)
∼ σ 2

ε τ
2H−2 as τ →∞ (4.48)

where H ∈ (0, 1).

4.7 Critical color categorization of randomness

4.7.1 Blue, white, pink, red, brown and black noise

Following Schroeder (1991, pp. 121–137) we can now present a color
categorization of randomness, or irregularity, by collecting the various descrip-
tive exponents and relating them to each other. This comparison of exponents will
facilitate the reading of a great variety of interdisciplinary research articles on phe-
nomena of time dependence. In Chapter 8, we’ll explain the intimate relationship
between our concept of “randomness,” as discussed in Chapter 1, and the concept
of “irregularity” as defined by the mathematician Lipschitz.

Definition 173 (1) When the Hurst exponent 0 < H < 0.5, i.e., −0.5 < d < 0,
the time series of increments is called antipersistent. (2) When H = 0.5, i.e.,
d = 0, the increments are independent or “white,” and the time dependence of the
series is neutral (or neutrally persistent). Examples are the increments of Random
Walks or Arithmetic Brownian Motions (for speculative prices) and of GBM (for
investment returns). The Brownian Motion series is once-integrated “white noise”
and is called “brown” noise. Its ACF decays hyperbolically:

γ (τ) = σ 2
ε �(τ)

�(τ + 1)

= σ
2
ε (τ − 1)!
τ !

= σ 2
ε τ
−1 (4.49)

(3) When 0.5 < H < 1, i.e., 0 < d < 0.5, the time series of increments is called
persistent.
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In the case of extreme antipersistence,H ↓ 0, so that the ACF of the time series
decays faster than hyperbolically in a quadratic fashion:

γ (τ) = σ
2
ε �(τ − 0.5)

�(τ + 1.5)

= σ
2
ε (τ − 1.5)!
(τ + 0.5)!

= σ 2
ε

(τ + 0.5)(τ − 0.5)

= σ 2
ε

(τ 2 − 0.25)

≈ σ 2
ε τ
−2 as τ →∞ (4.50)

At the other extreme of Hurst’s limited randomness spectrum H ↑ 1, so that
the ACF of the time series remains a flat constant and it never vanishes:

γ (τ) = σ
2
ε �(τ + 0.5)

�(τ + 0.5)

= σ 2
ε a constant, as τ →∞ (4.51)

4.7.2 Irregularity exponents

We can make a connection with the stable distributions discussed earlier in
Chapter 3, once we realize that, for globally (long-term) dependent time series,
for which the autocovariance function has the form

γ (τ) =
{
τλH(τ) for λ ∈ [−1, 0), or

−τλH(τ) for λ ∈ (−2,−1] (4.52)

as the time-interval lengthens, τ →∞, and H(τ) is any slowly varying function
at infinity, the dependence exponent λ equals

λ = 2d − 1

= υ − 1

= 2H − 2

= 2

αZ
− 2

= 2αL − 2 (4.53)

where d is the difference (order) exponent, υ is the spectral exponent (to be dis-
cussed in detail in Chapter 5), H is the aforementioned Hurst exponent, αZ is
the stability exponent of the Zolotarev parametrization of the stable distributions
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Table 4.3 Equivalence of various critical irregularity exponents

Exponents: Dependence Difference Spectral Hurst Stability
Color: λ d υ H αZ

Blue noise λ ↓ −2 d = −0.5 υ = −1 H ↓ 0 NA
Antipersistence −2 < λ < −1 −0.5 < d < 0 −1 < υ < 0 0 < H < 0.5 NA
White noise λ = −1 d = 0 υ = 0 H = 0.5 αZ = 2
Persistence 0 < λ < −1 0 < d < 0.5 0 < υ < 1 0.5 < H < 1 1 < αZ < 2

(pink)
Red noise λ ↑ 0 d = 0.5 υ = 1 H ↑ 1 αZ = 1
Brown noise NA d = 1 υ = 2 NA αZ = 2/3
Black noise NA 1 ≤ d ≤ 2 2 < υ ≤ 4 NA 2/5 ≤ αZ < 2/3

Note
NA= not applicable.

of Chapter 3, and αL is the Lipschitz regularity exponent (to be discussed
in Chapter 8).10 Thus, the randomness, or irregularity, categorization can be
expressed in terms of each of these critical exponents. For completeness of
definition: λ/2 is the so-called time-scaling exponent.

The complete spectrum of randomness, or irregularity, in terms of the five
critical exponents equivalent to the Lipschitz regularity exponent is given in
Table 4.3, which provides the essential relationships between the exponents of
the first difference of FBM (cf. also Keshner, 1982; Flandrin, 1989).

For example, for the Brownian Motion increments ε(t), which are white noise:

λ = −1, d = 0, υ = 0, H = 0.5, αZ = 2 (4.54)

Thus, the time series of Brownian Motion increments is modelled by white noise:

x(t) = (1− L)0ε(t)
= ε(t) (4.55)

Fractional integration of such white noise, when d = 0.5 and H ↑ 1, results in a
red noise series (Gilman et al., 1963):

x(t) = (1− L)−0.5ε(t) (4.56)

One complete integer integration of the white noise, when d = 1, results in a
brown noise series (= Brownian Motion)

x(t) = (1− L)−1ε(t) (4.57)

Visual samples of time series of such white, red and brown noise are given by
Figure 4.5.

In the case of 0.5 < H < 1, the vital property of the FBM is that the persistence
of its increments extends forever: it never dies out and gives rise to the empirically
observed catastrophes. The strength of such persistence is measured by the critical
H-exponent.
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(a)

(b)

(c)

Figure 4.5 Sample of (a) white noise with P(ω) = ω−0 power spectrum; (b) pink
noise withP(ω) = ω−1 power spectrum; and (c) brown noise withP(ω) =
ω−2 power spectrum.

Example 174 The rates of return x(t) of the S&P500 stock market index show
mild persistence with H = 0.67. Indeed, their graph is less irregular than that
of ordinary GBM increments. Its fractional dimension D is thus between the
dimension of a line, D = 1, and the dimension of a plane, D = 2:

1 < D = 2−H = 1.33 < 2 (4.58)
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In Chapter 8 we’ll discuss the fractional dimensions of financial time series
in more detail. Curiously, the Dow Jones Industrials stock index shows neutral
persistence, according to Li (1991), with H = 0.5.

Example 175 The fractional dimension of GBM increments, with H = 0.5, is

D = 2−H = 1.5 = 3

2
(4.59)

The case where 0.5 < d < 1.5, or, equivalently, 1 < υ < 3, which cannot be
measured directly by the H-exponent, but only after one differentiation, has been
called the infrared catastrophe (Wornell and Oppenheim, 1992). It can be measured
by the wavelet multiresolution analysis discussed in Chapter 8. More fractional
integration, for example d = 2, results in heavily persistent, or pure black noise

x(t) = (1− L)−2ε(t) (4.60)

As Schroeder (1991, p. 122) comments:

Black-noise phenomena govern natural and unnatural catastrophes, like
floods, droughts, bear markets, and various outrageous outages, such as those
of electrical energy. Because of their black spectra, such disasters often come
in clusters.

In contrast, the FBM increments with 0<H < 0.5 are antipersistent noise, hence
they diffuse more quickly than the Brownian increments. Such FBM increments
continuously return to the point they came from.

Remark 176 Notably this means that the theoretical Random Walk innova-
tions ε(t) are rather exceptional. They exhibit the same stability, αZ = 2, and
(in-)dependence, H = 0.5, as Gaussian random variables, but do not necessarily
have to be Gaussian! Furthermore, their ACF drops off geometrically withλ = −1.
By measuring the financial-economic, e.g., stock price innovations to be close to
Gaussian, Granger and Morgenstern (1963) and Granger (1966) inferred that
such innovations had a typical spectral shape. However, we’ll learn in Chapters 6
and 7 that their inference was erroneous, and that there was nothing typical about
that inferred shape, because it was biased by thinking exclusively in term of Gaus-
sian innovations ε(t) ∼ N(0, σ 2

ε ). For example, the covariance function of modern
foreign exchange rates, like the Japanese Yen or the German Deutschemark, shows
antipersistence, i.e., a slower drop-off of the ACF than the “typical” spectral shape
based on this assumption of Gaussian i.i.d. innovations.

4.7.3 Stability spectra

It is very important to understand that the Hurst exponent H is a rather lim-
ited measure of randomness and distributional stability with a very limited



Persistence of financial risk 127

x

–3

3

z

–3

3

y
–3

3

Figure 4.6 Relations between and constraints on d, H and αZ . The axes measure x = d ,
y = H , z = αZ .

measurement domain, and that the αZ-stability exponent, and the υ-spectral expo-
nent have much more extensive measurement domains. This becomes clear, when
we geometrically visualize the mathematical relationships, the constraints, and
the respective domains of the various critical irregularity exponents in Figure 4.6.

The implied equality αZ = 1/H does not hold for all values of αZ , since the
Hurst exponent, per definition, 0 < H < 1, implies that 1 < αZ <∞, while the
parametrized stable distributions of Chapter 3 are defined for the limited domain
0 < αZ ≤ 2. Apparently there exist empirical ultra-stable distributions (not yet
parametrized!) in the domain 2 ≤ αZ < ∞, since we find in extremo αZ ↑ ∞
whenH ↓ 0 (and d ↑ 0.5), which is complete stability. These distributions are the
distributions of singularities, or singularity spectra, which can be characterized
and measured by the stability exponent αZ . Considering that we have already
empirically measured antipersistence in the FX markets, we will discuss such
theoretical singularity spectra in Chapter 8.

As we recall from Chapter 3, and as is clearly visible in Figure 4.6, when the
Hurst exponent vanishes,H ↓ 0, the Zolotarev stability exponent becomes infinite,
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αZ ↑ ∞. In other words, for very small values of the Hurst exponent, H ↓ 0, we
acquire very uncertain measurements regarding Zolotarev’s stability exponent αZ .

In addition, there are now theoretically defined, parametrized stable distributions
where 0 < αZ < 1, which can also not be measured by the Hurst H -exponent
directly, but can be measured by αZ , if we can compute αZ in some other fashion.
These are the ultra-unstable distributions. However, empirically, there appears to
be a physical turbulence barrier at αZ = 2/5. In other words, there appears not to
exist any empirical αZ such that 0 < αZ < 2/5, even though there are theoretical
Zolotarev-parametrized distributions defined for such αZ values. Again, this is an
area open for further theoretical and empirical research.

In conclusion, the best domain for using theH -exponent to compute the stability
αZ-exponent is in the Gaussian neighborhood ofH = 0.5, where αZ = 2. Still, it
is important to recognize that there exists a stability spectrum of randomness, or
irregularity, completely specified by the stability exponent αZ .

Remark 177 Of course, one can still use the H-exponent for measuring
infrared and black catastrophes, by measuring the H-exponent after proper
integer-differentiation. For example, we hypothesize that x(t) is pure black noise
and has a spectral exponent υ = 4, then differentiation of two full times
(d = 2) should theoretically result in white noise series with a flat spectrum,
υ = 0, so that H = 0.5. However, when we empirically measure, for example,
H = 0.2 → υ = − 0.6, then the original series must have a spectral coefficient of
υ = − 0.6+ 4= 3.4 and not 4.

4.8 Software

Benoit 1.3: Fractal System Analysis (for Windows), Trusoft International Inc., 204,
37th Ave. N #133, St. Petersburg, FL 33704 Tel: (813) 925-8131; Fax: (813) 925-
8141; sales@trusoft-international.com. See http://www.trusoft-international.com
for details. This Benoit software enables you to measure the fractal dimension
and/or Hölder–Hurst exponent of your data sets using your choice of method(s)
for analysis of self-affine traces of speculative prices.

In the following Exercises you should use the Benoit software, Version 1.3. Once
you’ve accessed Benoit, enlarge the working screen by the maximizing $ button
in the upper-right corner of Benoit’s initial screen, otherwise you will not see the
crucial OK button. Always read the Benoit Help descriptions of the methods you
use and relate them to the text of this chapter. To feed the empirical data as inputs
into the Benoit program using EXCEL, read Benoit’s Help instructions on Data
Files (Data Formats).

4.9 Exercises

Exercise 178 Compare the ACFs of the four data series of the Exercises
of Chapter 1 against the theoretical benchmarks of Table 4.2. Are the series
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antipersistent, white noise, persistent (= pink) noise, red noise, brown noise or
black noise, respectively? How can you tell?

Exercise 179 Following Kasdin (1995), simulate three types of FBMs with Hurst
exponents H = 0.2, H = 0.5 and H = 0.8, respectively, by using Benoit’s
self-affine trace generator. Compare your results with the one in this chapter.
Generate no more than 250 points for each case. Use a vertical range of 0–25.
Generate both the traces and their first differences. The Benoit program provides
three methods for generating synthetic self-affine traces (the successive random
addition method, the Fourier Transform method and the wavelet method). Try all
three methods and describe in your own words how the results differ from each
other. In total you should generate 2 × 3 × 3 = 18 pictures. Save the traces
and their first differences and display them either in an EXCEL spreadsheet or in
Microsoft Power Point. These respective simulations will provide you with some
“benchmark” pictures for the following Exercises.

Exercise 180 Compute the Hurst exponent and the fractal dimension of our
S&P500 data of the Exercises of Chapter 1 using Hurst’s Rescaled-Range (R/S)
analysis for (1) the original share prices, (2) their total rates of return and (3)
for first differences of the rates of total return. (Use the double logarithmic plot
window.)

Exercise 181 Repeat the preceding Exercise, using the Irregularity (or
Roughness)–Length method, which relates the standard deviation of windows of
various length to the Hurst exponent, in the fashion described in this chapter. It
plots the logarithm of the standard deviation (or Root-Mean-Squared (RMS) error)
against the logarithm of the length of the window τ .

Exercise 182 Repeat the preceding Exercise, using the Variogram method, which
is directly related to the autocovariance function.

Notes

1 The current unorthodox efforts to characterize nonstationary financial-economic time
series using more advanced signal processing technology are comparable with these
early out-of-the-mainstream technical efforts by Granger and Morgenstern. For exam-
ple, econometrician J. B. Ramsey of New York University performed the first wavelet
multiresolution analysis (MRA) of macroeconomic data series (Ramsey, 1997).

2 Los (1999, 2000) provides some empirical examples of such “periodicity” for Asian
FX markets, using non-parametric methods, based on high frequency data for 1997.

3 Cf. Los (1984) for theoretical discussions and Monte Carlo experiments with empirically
estimated Kalman filters for econometric time-varying parameter models, including
unstable ones.

4 We’ll discuss in Chapter 12 possible insurance against such extreme catastrophic events,
in the context of some dramatic hydrological and financial developments in mainland
China.
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5 Mandelbrot has questioned if Hosking’s ARFIMA models were an improvement over
his simpler fractionally differenced models, since such models with fractional expo-
nents can trivially represent the integer exponent ARIMA models. But Hosking wanted
to show the fractional and integer exponents separately within one modified frame-
work, because they represent different phenomena: non-periodic and periodic cyclicity,
respectively.

6 Cf. Meerschaert (1999) for the continuous time form of these long memory dynamic
processes.

7 Such classical ACFs support the econometric measurements of Vector Auto-Regression
(VARs) models. Classical VARs can represent higher order periodicities, but not the
long-term time dependent phenomenon of non-periodic cyclicities, because they are
expressed in terms of integer Markov processes. Of course, one can also, unconvention-
ally, model fractional VARs to properly represent globally dependent or long memory
processes.

8 And not the incorrect value of H = 0.53 provided by Mantegna and Stanley (2000,
p. 86), who are proven wrong by their own figure 10.7, which we borrowed as our
Figure 4.3.

9 Hölder (1859–1937) was a German mathematician, who devised treatment of divergent
series of arithmetic summations, which led to a regularity exponent now recognized to
be similar to Hurst’s. However, Hölder was thinking about microscopic (physics) pheno-
mena, in contrast to Hurst, who thought about macroscopic (hydrological) phenomena.
The Hölder–Hurst exponents are also called critical Lipschitz irregularity exponents.

10 Somewhat confusingly presented in the literature, the Zolotarev stability αZ = 1/αL,
where αL is the Lipschitz regularity exponent. In the literature, one often finds just α
and it is not always clear if the author(s) mean(s) the Zolotarev stability exponent αZ
or the Lipschitz αL. We hope that this comparison of the various critical exponents
and the presentation of their relationships will lift the dense fog between the various
scientific disciplines, in particular in finance, physics and engineering, which deal with
essentially the same signal processing phenomena.
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Part II

Financial risk measurement





5 Frequency analysis of financial risk

5.1 Introduction

In Chapter 3 we analyzed the marginal distribution and in Chapter 4 the tempo-
ral dependence of investment returns identified as Fractional Brownian Motion
(FBM). We’ll now prepare to look at these two aspects of the research problem to
characterize the long-term temporal risks of such returns simultaneously in their
frequency and time domains. As we discussed in the preceding four chapters,
Geometric Brownian Motion (GBM) increments are, per definition, independent
and stationary (i.i.d.). Their stationarity allows for Fourier analysis, i.e., linear
analysis in the frequency domain, since their (co-) variances and therefore their
(co-) frequencies are constant. These increment series can be expanded in series
of scaling frequencies, the so-called frequency spectra. In the next chapter, when
we discuss windowed Fourier analysis, we’ll determine how the FBM scaling
frequency spectra depend on, and vary through, time.

In particular, in this chapter we’ll discuss first covariance or correlation func-
tions, which measure the degree of linear dependence, time and frequency
convolution, and Fourier (= frequency or spectral) analysis. This chapter will
prepare us for the next chapter, where we will visualize nonlinear dependence
measurements in the time-frequency domain using Gábor’s spectrograms based
on the Windowed Fourier Transform.

Our original financial-economic inspiration originated with the work by Granger
and Morgenstern (1963), Granger (1966) and Priestley (1981).1 For the following
mathematical details of measuring the time-dependence of varying frequencies
we are indebted to Bloomfield (1976), Hsu (1984), Champeney (1990), Nikias
and Petropulu (1993) and Körner (1990). Additional and more recent examples of
applied Fourier analysis can be found in Folland (1992).

5.2 Visualization of long-term financial risks

5.2.1 Plot of absolute ACF against time horizons

Because of time-reversals and reversals-to-the-mean in time series, it is diffi-
cult to detect long-term dependence and geometric scaling laws by just plotting
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the Autocorrelation Function (ACF) γ (τ), of first differences of the returns on
investments

�x(t) = �[lnX(t)− lnX(t − 1)] (5.1)

or of first differences of foreign exchange (FX) rates

�X(t) = X(t)−X(t − 1) (5.2)

The reason is that it is difficult to visually distinguish between the decays of the
various ACFs corresponding to various fractional difference constants d, as was
originally suggested by Box and Jenkins (1970). An only mildly better identifying
picture of these slow geometric declines in dependence, which are indicative for
long-term dependence, are plots of the absolute values of the ACFs, |γ (τ)|, or
of their squared values, |γ (τ)|2, against the time horizons τ , as in Figure 4.4 of
Chapter 4.

5.2.2 Time-frequency and time-scale visualizations

In addition, there is a more fundamental problem with this particular identifi-
cation methodology. The ACF, γ (τ), provides only second-order evidence for
linear dependence, i.e., evidence for weak linear dependence (cf. Chapters 1
and 3). Following up on our conjecture at the end of Chapter 2, that financial
risk involves more than just the second-order moments of variance and covariance
of financial variables, we prefer to visualize the shape of their complete distri-
butions, in particular, by way of their third- and fourth-order moments – their
skewness and kurtosis. This is similar to what we did for the stable distributions
discussed in Chapter 3. Moreover, we would like to visualize complete distri-
butional evidence for all relative frequencies of occurrence for a time series for
any form of time dependence, and not only for its correlation, i.e., for its linear
dependence.

Thus, our preferred methodology should be to simultaneously visualize the
marginal distributional evidence and the time-localized dependence evidence of
these nonstationary time series, so that we can also better distinguish between
serial (short term) time-dependence and global (long term) time-dependence. Such
visualization and identification methodology exists already for more than half
a century and it is very familiar to signal processing engineers.

In short, we need to analyze time-frequency pictures, or spectrograms, of finan-
cial time series, as discussed in Chapter 6, and time-scale pictures, or scalograms,
as discussed in Chapter 7 to enable the required, and proper, identification of
financial market risk.

5.3 Correlation and time convolution

In this section, we’ll define the ACF of classical time series analysis (Jenkins
and Watts, 1968; Box and Jenkins, 1970; Anderson, 1994) and establish its close
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relationship with the convolution of signal processing. It’s important to recognize
that all correlation functions, convolutions and Fourier Transforms discussed in
this chapter are scalar products, based on simple integrations.

Definition 183 The scalar product, or inner product, on the space of L2[a, b] of
square integrable functions is defined by

〈x, y〉 =
∫ b

a

x(t)y(t) dt (5.3)

A scalar product of two vectors and a simple integral are essentially the same
thing. The two operations exactly coincide in the following situation (Burke-
Hubbard, 1998, pp. 159–160). The step functions f (t) are defined for 0 ≤ t ≤ T
and are constant, except possibly at the integers. For example, imagine a step
function Ȳ (t) representing an average quantity of a commodity in time period t
and another step function X̄(t) representing the average price of that commodity
in time period t . Then, the integral

∫ b

a

X̄(t)Ȳ (t) dt (5.4)

gives the total revenue of the sale of this commodity over the period (b− a) . But
the same information is given by the scalar product

〈X̄, Ȳ 〉 =
〈
X̄a
...

X̄b


 ,


Ȳa
...

Ȳb



〉

= X̄aȲa + · · · + X̄bȲb

=
b∑
t=a
X̄(t)Ȳ (t) (5.5)

In a 2-Dimensional (2D) price–quantity diagram, the scalar product 〈X̄, Ȳ 〉would
represent the space under the average price curve.

5.3.1 Covariance functions

Let’s now use this scalar product to specify the covariance and correlation
functions.
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Definition 184 The cross-covariance function of two (random) variables x1(t)

and x2(t) is

R12(τ ) = E{x1(t)x2(t − τ)}

=
∫ +∞

−∞
x1(t)x2(t − τ) dt

=
∫ +∞

−∞
x1(t)L

τ x2(t) dt (5.6)

Of course, we also have

R21(τ ) = E{x2(t)x1(t − τ)}

=
∫ +∞

−∞
x2(t)x1(t − τ) dt

=
∫ +∞

−∞
x2(t)L

τ x1(t) dt (5.7)

where L is the familiar linear lag operator.
The cross-covariance function R12(τ ), or R21(τ ), provides a measure of linear

similarity, or linear dependence, between the variables x1(t) and x2(t) as a function
of the parameter τ , the time shift of one variable with respect to the other. If the
cross-covariance function is zero for all time shifts τ , then the two variables are
said to be uncorrelated.

Definition 185 If the (random) variables x1(t) and x2(t) are identical, the
covariance function

R11(τ ) =
∫ +∞

−∞
x1(t)x1(t − τ) dt

=
∫ +∞

−∞
x1(t)L

τ x1(t) dt (5.8)

is called the autocovariance function of x1(t).

Definition 186 The normalized quantity γ (t) defined by

γ (τ) =
∫ +∞
−∞ x1(t)x1(t − τ) dt∫ +∞

−∞ [x1(t)]2 dt

=
∫ +∞
−∞ x1(t)L

τ x1(t) dt∫ +∞
−∞ [x1(t)]2 dt

(5.9)

is called the autocorrelation function (ACF) of x1(t), and

γ (0) = 1 (5.10)
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The ACF of the FBM, which we interpreted in Chapter 4 as a fractional
summation of white noise processes,

x(t) = (1− L)−dε(t) (5.11)

with ε(t) ∼ i.i.d.(0, σ 2
ε ), is given by

γ (τ) = E{x(t)x(t − τ)}

=
∫ +∞

−∞
x(t)Lτ x(t) dt

=
∫ +∞

−∞
(1− L)−dε(t)Lτ (1− L)−dε(t) dt

=
∫ +∞

−∞
(1− L)−2dLτ ε2(t) dt

=
∫ +∞

−∞

[ ∞∑
τ=0

(−1)τ
(−2d
τ

)
Lτ

]
Lτε2(t) dt

=
[ ∞∑
τ=0

(−1)τ
(−2d
τ

)]
L2τ

∫ +∞

−∞
ε2(t) dt

= σ 2
ε

∞∑
τ=0

c(τ ) (5.12)

using the results of Chapter 4. The coefficients c(τ ) can again be expressed in
terms of the gamma function

c(τ ) = (−1)τ
(−2d
τ

)

= (−1)τ (−2d)!
τ !(−2d − τ)!

= (−1)τ (−2d)(−2d − 1) · · · (−2d − τ + 1)

τ !
= (2d + τ − 1) · · · (2d + 1)(2d)

τ !
= (2d + τ − 1)!

(2d − 1)!τ !
= �(τ + 2d)

�(2d)�(τ + 1)! (5.13)

As the time horizon increases, τ →∞,

c(τ ) ∼ τ 2d−1

(2d − 1)! (5.14)
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There are three cases: when d ↓ − 1
2 ,

c(τ ) ∼ τ−2 (5.15)

When d = 0, the Gaussian case occurs

c(τ ) ∼ τ−1 (5.16)

When d ↑ 1
2 ,

c(τ ) ∼ 1 (5.17)

Thus, the ACF of the FBM is proportional to

γ (τ) ∼ σ 2
ε τ

2d−1

= σ 2
ε τ

2H−2 (5.18)

This clearly shows that the ACF of the FBM is time-dependent, since it scales
according to the time horizon τ . How fast it decreases in scale depends on the
scaling exponent 2d − 1 = λ = 2H − 2 or 2d + 1 = λ + 2 = 2H , respectively
(Table 4.2 in Chapter 4).

5.3.2 Symmetry properties of covariance functions

It is easy to show that, because of symmetry,

R12(τ ) = R21(−τ) (5.19)

and

R11(τ ) = R11(−τ) (5.20)

5.3.3 Time convolution

Signal engineers prefer to use the concept of time convolution, in contrast to time
series statisticians, who prefer to use the concept of a covariance function. Shortly,
we’ll show that time convolution and the covariance function are equivalent.

Definition 187 The convolution of two variables x1(t) and x2(t) is

f (t) =
∫ +∞

−∞
x1(u)x1(t − u) du (5.21)

which is often symbolically expressed by a “star” symbol � as

f (t) = x1(t) � x2(t) (5.22)
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5.3.4 Properties of time convolution

Time convolution has three important algebraic properties, which are often used
in theoretical Fourier analysis (Hsu, 1984):

(1) Convolution is commutative

x1(t) � x2(t) = x2(t) � x1(t) (5.23)

(2) Convolution is associative

[x1(t) � x2(t)] � x3(t) = x1(t) � [x2(t) � x3(t)] (5.24)

(3) Convolution is distributive

x1(t) � [x2(t)+ x3(t)] = x1(t) � x2(t)+ x1(t) � x3(t) (5.25)

5.3.5 Covariance as time convolution

The cross-covariances of x1(t) and x2(t) are related to the convolutions of x1(t)

and x2(−t), as follows. Let, by the definition of time convolution,

G12(t) = x1(t) � x2(−t)

=
∫ +∞

−∞
x1(u)x2[−(t − u)] du

=
∫ +∞

−∞
x1(u)x2(u− t) du (5.26)

Changing the variable t to τ and the dummy variable u to t , we have

G12(τ ) =
∫ +∞

−∞
x1(t)x2(t − τ) dτ

= R12(τ ) (5.27)

Hence, a cross-covariance equals the following time convolution

R12(τ ) = G12(τ ) = x1(t) � x2(−t)|t=τ (5.28)

5.4 Fourier analysis of stationary price innovations

We will now first discuss the Fourier analysis of stationary periodic variables, e.g.,
of Random Walk price innovations, and, next, the Fourier analysis of stationary
aperiodic variables.2 Fourier analysis is a mathematical technique for transforming
the view of a time series from a time-based one to a frequency-based one (Körner,
1990). It analyzes the “frequency content” of a time series.
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This particular property is also the drawback of Fourier analysis, since in
this transformation from the time domain to the frequency domain, the timing
of information is lost, because a Fourier Transform (FT) is a global represen-
tation of a time series over the whole time domain (−∞,+∞). But if a time
series does not change much over time – i.e., if it is stationary – this draw-
back isn’t very important. In fact, it’s properties make it a very suitable tool
for studying linear time-invariant operators (cf. Chapter 3), such as differentia-
tion or integration with integer orders. Such classical research was the basis for
the very first forays into empirical periodic analysis of financial price formation
(Osborne, 1962).

However, if a given frequency is present in a time series x(t) over only a limited
time interval, the FT is unable to accurately detect this frequency and to give any
information about its lifetime or coherence and about the moments of its appearance
and of its disappearance.

The following analysis will culminate in the definition of the (constant)
risk or power spectral density (PSD) for stationary aperiodic variables. This
PSD can be visualized by a spectrogram. A spectrogram is a powerful visu-
alization for empirical analysis of stationary random variables. The important
Wiener–Khinchin Theorem will show that the risk spectrum is the FT of the
auto-covariance function. Thus, we can analyze stationary aperiodic variables
x(t) by computing their covariance functions, or equivalently, their PSDs. This
Fourier analysis of stationary series will be followed by the even more use-
ful windowed Fourier analysis of slowly changing nonstationary variables in
Chapter 6, since we have already observed that most financial market time series are
nonstationary.

Definition 188 A periodic variable is any variable for which

x(t) = x(t − τ) for all t (5.29)

The smallest constant τ that satisfies this equation is called the period τ of this
variable.

Remark 189 By iteration, we have for periodic variables the following
relationship

x(t) = x(t − nτ) for n = 0,±1,±2, . . . (5.30)

5.4.1 Fourier series for periodic variables

Definition 190 A periodic variable can be represented equivalently by two
trigonometric forms and one complex exponential form of the Fourier series,
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as follows

x(t) = a0

2
+
+∞∑
n=1

(an cos nω0t + bn sin nω0t) (5.31)

= C0 +
+∞∑
n=1

Cn cos(nω0t − θn) (5.32)

=
+∞∑
n=−∞

cne
jnω0t (5.33)

where ω0 = 2π/T and the imaginary number j = √−1.

The Cartesian coefficients an and bn, respectively the polar coefficients Cn, as
well as the exponential coefficients cn are collectively called: the Fourier reso-
nance coefficients. The second equivalent trigonometric Fourier series is called
the harmonics form.

Notice that the Fourier series expansion of a periodic time variable describes a
periodic variable as a sum of sinusoidal components having different frequencies.
The sinusoidal component of frequencyωn = nω0 is called the nth harmonic of the
periodic variable and n is called the wave number. Hereω0 = 2πf0 = 2π/T is the
fundamental angular frequency and f0 = 1/T is the fundamental frequency and
the first harmonic C1 cos(ω0t− θ1) is called the fundamental component (because
it has the same period as the variable x(t)). An increase in frequency decreases
the wavelength.

The coefficients Cn and the angles θn are the harmonic amplitudes, i.e., they
scale the amplitude of the sinusoidal waves, and phase angles, respectively, i.e.,
they shift the position of the sinusoidal waves, respectively. Thus, Fourier analysis
scales and shifts the sinusoidal bases ejnω0t to achieve a complete analysis of the
time series.

Example 191 Fourier series can be used to approximate target time series x(t),
in this example, a step function, or square wave, as in Figure 5.1. We start with a
mean f0 = C0 = 1 and, successively add the large wave f1 = cosω0, subtract
three times smaller and three times more frequent wave f2 = 1

3 cos 3ω0 to cre-
ate the general “hat” shape. Next we add a five times smaller and faster wave
f3 = 1

5 cos 5ω0. In the left column of Figure 5.1 are the target and terms f1 through
f3. In the right column are f0 and the succeeding sums, as each term is added
to f0. Notice that the approximation improves (i.e. each successive sum approxi-
mates the square wave more precisely) as the number of Fourier terms in the series
increases. In the last graph, terms f5 and f6 are added (but not shown separately)
to show further improvement in the approximation. Notice the Gibbs phenomenon,
consisting of spurious sinc(t) oscillations over the whole time domain. In older
sound systems, which use Fourier approximation expansions for communication
and transfer of information, this approximation error phenomenon causes a slight
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Figure 5.1 Fourier series approximation of a square wave.

“hiss.” The Gibbs phenomenon will be discussed in greater detail in Chapter 11,
when we are looking at the various finite element numerical solution methods
for nonlinear diffusion equations. We’ll find that interpolating wavelet expan-
sions more precisely locate the Gibbs phenomenon than the Fourier trigonometric
expansions thereby eliminating most of the Gibbs phenomenon.

Remark 192 It is easy to proof (by checking) the following conversion formulas
of the Fourier resonance coefficients.

For n �= 0

Cn =
√
a2
n + b2

n = 2|cn| and θn = tan−1
(
bn

an

)
(5.34)
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and

cn = |cn|ejφn where |cn| = 1
2

√
a2
n + b2

n and φn = tan−1
(
−bn
an

)
= −θn

(5.35)

or

cn = 1
2 (an − jbn) and c−n = 1

2 (an + jbn) = c∗n (5.36)

where the asterisk ∗ indicates the complex conjugate, so that

an = 2 Re[cn] and bn = −2 Im[cn] (5.37)

For n = 0

a0

2
= C0 = c0 (5.38)

Example 193 The sophisticated heat analysis, conducted by J. B. J. Fourier
himself during Napoleon’s campaign in Egypt, allows for time-varying Fourier res-
onance coefficients, which are better analyzed in Chapter 6, when we analyze
nonstationary time series. It illustrates how Fourier analysis can be used to solve
problems that are difficult to analyze in the time domain, but easier to solve in the
frequency domain, as can be seen in Figure 5.2. (adapted from Burke-Hubbard,
1998, p. 13). To determine the temperature at time t of a metal bar (in the case of
J. B. J. Fourier, the barrel of a cannon in Napoleon’s Grand Army) that is cooling,
one starts by measuring the bar’s initial temperature (at t = 0), representing it as
a temperature function x(s, t) that depends on space s (= distance along the bar)
and time t . Next one moves from physical space to the frequency domain, com-
puting its time-dependent FT F(ω, t), which tells us the coefficient cn for each
frequency ωn = nω0, or heat wave number n, making up the heat function x(s, t)
at time t = 0. The Fourier resonance coefficients at time t = 0, are given by the
formula

cn(0) = n−0.5 (5.39)

The Fourier resonance coefficients at time t are computed with the formula

cn(t) = cn(0)e(−n2t/100)

= n−0.5e(−n2t/100) (5.40)

It’s clear that these time-dependent Fourier resonance coefficients decay over
time: the heat waves vanish over time. Consider here just the coefficients for times
t = 1, 5, 10 and 50. For each such time, the coefficients are the same for the entire
bar (Fourier resonance coefficients are global coefficients) and the information on
space x seems to have disappeared. But this space information reappears when
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Figure 5.2 Heat diffusion analysis: by following the arrows we find a FT from the measured
temperature in physical space to the heat wave frequency domain, and then
analyze and return to physical space by the inverse FT.

we return from the frequency domain to the space domain: we invert the resolved
FT F(ω, t) to obtain the function x(s, t), which provides the exact temperature
for each point s of the bar at any time t .

5.4.2 Computation of the Fourier resonance coefficients

The constant Fourier resonance coefficients can be computed directly from the
data, once we take account of the fundamental orthogonality of the sinusoidal
bases.

5.4.2.1 Orthogonality of sinus and cosinus

Definition 194 A set of functions {φk(t)} is orthogonal on an interval a < t <
b, if, for any two functions φm(t) and φn(t) in the set {φk(t)}, the following
relationship holds∫ b

a

φm(t)φn(t)dt =
{

0 for m �= n
rn for m = n (5.41)
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Definition 195 The set of functions {φk(t)} is orthonormal, when it is orthogonal
and rn = 1 for m = n.

Using elementary calculus, one can easily show that sines and cosines form an
orthogonal set of functions on the interval −T/2 < t < T/2, since∫ T/2

−T/2
cos(mω0t) = 0 for m �= 0 (5.42)

∫ T/2

−T/2
sin(mω0t) = 0 for all m (5.43)

∫ T/2

−T/2
cos(mω0t) cos(nω0t) dt =

{
0 for m �= n
T/2 for m = n �= 0

(5.44)

∫ T/2

−T/2
sin(mω0t) sin(nω0t) dt =

{
0 for m �= n
T/2 for m = n �= 0

(5.45)

∫ T/2

−T/2
sin(mω0t) cos(nω0t) dt = 0 for all m and n (5.46)

where ω0 = 2π/T .
Such a well-defined set of orthogonal analytic functions is called a frame of ref-

erence. When a frame of reference is complete, it forms a basis for analysis. Such a
basis may contain functions that are not necessarily orthogonal (or orthonormal),
but its analytic results, i.e., the computed correlation coefficients, are easier to
understand when they are. Fortunately, each frame of reference can be orthog-
onalized. When we discuss wavelets in Chapter 7, we’ll discuss more details of
these important analytic frames of reference and bases.

5.4.2.2 Valuation of the trigonometric Fourier resonance coefficients

Using these orthogonality relations of the sines and cosines, we can now compute
the Cartesian Fourier resonance coefficientsan andbn of the Fourier seriesx(t) and,
by using the conversion relations, also the polar Fourier resonance coefficients Cn
and θn, and the exponential Fourier resonance coefficients of cn and φn, as follows:

an = 2

T

∫ T/2

−T/2
x(t) cos(nω0t) dt for n = 0, 1, 2, . . . (5.47)

bn = 2

T

∫ T/2

−T/2
x(t) sin(nω0t) dt for n = 0, 1, 2, . . . (5.48)

and

a0 = 2

T

∫ T/2

−T/2
x(t) dt (5.49)
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5.4.2.3 Valuation of complex Fourier resonance coefficients

First, we have the simple mean

c0 = a0

2
= 1

T

∫ T/2

−T/2
x(t) dt (5.50)

Then, with the use of the identity

e−jθ = cos θ − j sin θ (5.51)

we find

cn = 1
2 (an − jbn)

= 1

T

[∫ T/2

−T/2
x(t) cos(nω0t) dt − j

∫ T/2

−T/2
x(t) sin(nω0t)dt

]

= 1

T

[∫ T/2

−T/2
x(t)[cos(nω0t) dt − j sin(nω0t)]dt

]

= 1

T

∫ T/2

−T/2
x(t)e−jnω0t dt (5.52)

Similarly,

c−n = 1
2 (an + jbn)

= 1

T

∫ T/2

−T/2
x(t)ejnω0t dt (5.53)

These two formulas for cn and c−n, respectively, can be combined into a single
exponential formula

cn = 1

T

∫ T/2

−T/2
x(t)e−jnω0t dt for n = 0,±1,±2, . . . (5.54)

These results have led to the powerful analytical identity of Parseval, which
provides us with an exact accounting of the total amount of risk = volatility =
energy = power contained in the financial time series x(t), when decomposed
into an infinite series of wave functions.
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Proposition 196 (Parseval’s identity) If a0, an and bn are the coefficients in the
Fourier expansion of a periodic function x(t) with period T , then

1

T

∫ T/2

−T/2
[x(t)]2 dt = a

2
0

4
+ 1

2

+∞∑
n=1

(a2
n + b2

n) (5.55)

= c2
0 + 2

+∞∑
n=1

|cn|2 (5.56)

=
+∞∑
n=−∞

|cn|2 (5.57)

This mean-square value is called the risk content of the periodic function x(t).
Thus, the finite estimate of the second moment of the periodic x(t) equals this
infinite sum of the squared Fourier resonance coefficients!

5.4.2.4 Orthogonality of complex exponential functions

The complex form of the Fourier series is the most useful. It is the initial platform
for our discussion of wavelets in Chapter 7. Consider a set of complex exponen-
tial functions {ejnω0t } where the fundamental frequency is ω0 = 2π/T . Using
elementary calculus, one can show that the mean

1

T

∫ T/2

−T/2
ejnω0t dt = 0 for n �= 0 (5.58)

and the (complex) variance

1

T

∫ T/2

−T/2
ejmω0t (ejnω0t )∗dt =

{
0 for n �= m
1 for n = m (5.59)

The complex exponential functions {ejnω0t }, n = 0,±1,±2, . . . , form a set
of orthogonal basis functions over the interval −T/2 < t < T/2. They form a
complete frame of reference and, thus, a basis for analysis.

5.4.3 Frequency spectra

Definition 197 A plot of the magnitude |cn| of the complex Fourier resonance
coefficients cn versus the angular frequency ω is called the amplitude spectrum of
the periodic variable x(t). A plot of the phase angle φn of cn versus ω is called
the phase spectrum of x(t).

Since for periodic series the index n assumes only integers, these two spectra
are not continuous curves, but appear only at discrete frequencies nω0. They are
discrete frequency spectra or line spectra.
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Figure 5.3 A sample signal constructed from sine functions representing three pulsations:
ω1 = 6, ω2 = 12, ω3 = 3 with the same amplitude. The time coherence of
ω1 and ω3 is identical. Discontinuities are present at the time of change of
frequencies.

Example 198 Figure 5.3 presents a sampled continuous time signal function
s(t) constructed from three successive sine functions with the same coherence or
lifetime T1 for frequency ω1 and ω3 < ω1, and shorter coherence T2 for frequency
ω2 > ω1 (Bendjoya and Slezak, 1993, pp. 233–234). The signal s(t) shows discon-
tinuities at the time of change of frequencies. Figure 5.4 displays the modulus of the
Fourier resonance coefficients |cn|, i.e., its line spectrum. Notice the rather good
detection of the three frequencies present in s(t) and how the high frequency ω2 is
less precisely detected because of its shorter coherence. The spurious fluctuations
all over this spectrum are due to the discontinuities. No information can be obtained
from the line spectrum about the sequence of the changes in frequencies, the time at
which the different frequencies appear and disappear in s(t), or about their coher-
ence. Only a “timeless” frequency analysis is performed, which can be distorted by
discontinuities.

Example 199 Figure 5.5 shows examples of the magnitude spectra of sev-
eral musical variables, which are, clearly, periodic, sinusoidal waves (Kemp,
1991, p. 12). The clarinet, the violin and the highland bagpipe playing the
same note (B flat above middle C, 466 Hz). The interferograms (= correlograms)
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Figure 5.4 The FT of the sampled signal s(t). The three frequencies ω3 < ω1 < ω2 are
detected, but the frequency ω2 with he shortest time coherence has the smallest
resonance coefficient. The spurious fluctuations all over this spectrum are due
to the discontinuities in the signal.
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Figure 5.5 Fourier series analysis of pure musical harmonics: dominant frequencies of the
clarinet, violin and bagpipe.
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at the upper right-hand side were Fourier transformed to show the resonance
coefficients of their individual frequencies, or resonances emitted, as shown
at the lower left side. Notice that the clarinet is almost pure, with one domi-
nant frequency at 466 Hz. The violin shows several dominating higher frequency
overtones in addition to the 466 Hz. And the bagpipe shows both a dominant
lower harmonic (from the bas drone) and several dominant higher frequency
harmonics.

5.5 Software

The computations of the following Exercises can be executed by using the
MATLAB® Signal Processing Toolbox and by the MATLAB® Higher-Order Spec-
tral Analysis (HOSA) Toolbox (Swami et al., 1998). Both Toolboxes are available
from The MathWorks, Inc., 24 Prime Park Way Natick, MA 01760-1500, USA.
Tel (508) 647-7000; Fax (508) 647-7001;

http://www.mathworks.com/products/wavelettbx.shtml.
The HOSA Toolbox (2.0.3) is a collection of MATLAB® M-files containing

specialized tools for signal processing with higher order spectra. It was created by
Jerry M. Mendel, Chrysostomos L. (Max) Nikias and Ananthram Swami of United
Signals and Systems, Inc. The toolbox is a collection of MATLAB® routines whose
primary features are functions for: higher order spectrum estimation either by
conventional or parametric approaches; magnitude and phase retrieval; adaptive
linear prediction; harmonic retrieval and quadratic phase coupling; time-delay
estimation and array signal processing.

5.6 Exercises

Run MATLAB® Help, Examples and Demos, Toolboxes, Signal Processing:

Exercise 200 Filtering a sinusoidal signal: look carefully at the creation of a
sinusoidal signal with different frequencies by superposition, the creation and
implementation of the IIR (= Infinite Impulse Response filter), the way the various
series are plotted, the magnitude versus frequency diagram of the Fast Fourier
Transform (FFT) (cf. Brigham, 1988).

Exercise 201 Spectral Analysis of the DTMF signal (with sound): study the
spectrum diagram

Exercise 202 Discrete Fourier Transform (DFT) (try different windows): study
the effects on the DFT by changing frequency and amplitude of the signal. Notice
that there doesn’t exist a DFT for an infinite signal. (It’s somewhat confusing that
the command for the DFT in MATLAB® is fft. For the inverse DFT it is ifft.)

Exercise 203 Continuous FT: study the effects of different modulation fre-
quencies on the FT of the modulated Gaussian pulse. Notice the symmetry
of the FT.
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Notes

1 Chapter 6 contains a visual example of the original spectral analysis of the Standard and
Poor stock market series by Granger and Morgenstern (1963).

2 Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician, who became
famous for his mathematical treatise on the Theorie Analytique de la Chaleur (Analyt-
ical Theory of Heat), 1822. He established the partial differential equation governing
the heat diffusion in the barrels of the canons of Napoleon’s Grand Army to deter-
mine how quickly these cannons could be safely reloaded. He solved it by using an
infinite series of trigonometric functions. His diffusion (= partial differentiation) equa-
tion was used in 1973 to derive the Black–Scholes European option pricing model.
This heat diffusion equation is also used in the theory of turbulence, as we will see in
Chapter 11.
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6 Fourier time–frequency
analysis of risk

6.1 Introduction

As we discussed in Chapter 5, Fourier series are powerful tools for analyzing
periodic variables, such as musical tones of instruments, or for determining the
spectral lines of inorganic and organic chemical components. But very few prac-
tical problems of financial-economic analysis do involve such rigidly periodic
variables. We need a form of Fourier analysis that can deal with aperiodic, but
still “cyclical” variables and that can identify Mandelbrot’s aperiodic cyclicity
prevalent in the long memory financial return series. Therefore, we’ll discuss a
frequency representation of aperiodic variables by means of the Fourier Trans-
form (FT), which analyzes the frequency contents of any time series, periodic or
aperiodic, as the case may be.

The many properties of the FT make it particularly suitable for representation
in terms of linear time-invariant system operators, such as integer differentiation
or integration, discussed in Chapter 4. Its immediate shortcoming is the same as
that of the Fourier series: the FT is a global, and not a local, representation of
a time series, since it takes an integral, or average, of the available set of time
series observations.

In the second half of this chapter we’ll discuss the Windowed FT, which is
suitable to analyze transient phenomena localized in time, although, perhaps,
only suboptimally, since the support of the Fourier wave bases remains infinite.
This Windowed FT was discovered by Gábor (1946) and produces the color-
ful spectrograms of instantaneous frequency distributions familiar from speech
analysis and other, rather entertaining internet media, such as RealPlayerTM,
which lists real-time spectrograms among its audio statistics. Considering that
financial time series of investment returns or foreign valuta prices are as nonsta-
tionary as speech, Windowed FT forms a powerful, and still heavily under-utilized,
research tool for the time–frequency analysis of financial risk (Priestley, 1988;
Cohen, 1989).

A very recent, optimal and complete way of analyzing such localized phenom-
ena, which does not suffer from the “infinite support syndrome” of the FT, but
which relies instead on finite support, will be discussed in the next chapter, when
we focus on time series analysis by finite wavelet bases.
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6.2 FT for aperiodic variables

The continuous FT for aperiodic time series is analogously defined to the dis-
crete Fourier series for periodic time series of Chapter 5, as follows (Hsu, 1984;
Champeney, 1990).

Definition 204 The FT of time series x(t) (symbolized by F) in the square-
integrable L2 space is defined by the inner product (or correlation):

F(ω) = F[x(t)]

=
∫ +∞

−∞
x(t)e−jωtdt (6.1)

Definition 205 The inverse FT of F(ω) (symbolized by F−1) represents the
time series x(t) as an infinite integral (“sum”) of sinusoids:

x(t) = F−1[F(ω)]

= 1

2π

∫ +∞

−∞
F(ω)ejωtdω (6.2)

Remark 206 These two equations are often called the FT pair, symbolically
denoted by

F(ω)↔ x(t) (6.3)

The condition for the existence of the FT F(ω) is given by

∫ +∞

−∞
|x(t)| dt <∞ (6.4)

In other words, the variable x(t) must be absolutely integrable. This is the same
restrictive condition as exists for martingales (cf. Chapter 2) and, again, it excludes
discontinuities and jumps, but also periodic functions, because, for example, for
any periodic function:

∫ +∞

−∞
|x(t)| dt = ∞ (6.5)

Thus, strictly defined, the FT (which is NOT the Fourier series) cannot properly
deal with discontinuities or singularities (catastrophes) and periodic functions.
However, the Windowed FT can detect other transient phenomena. So let’s see
how we can understand this form of windowed analysis.

Since any periodic variable x(t) is a function of slow growth, its FT exists in
the sense of a generalized function, as follows.
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Definition 207 A function x(t) of slow growth is defined if there exist real
numbers C and R such that

x(t) ≤ Ctn where |t | > R > 0 (6.6)

Immediately related to this concept of slow growth is the concept of a restricting
device, such as a taper, which “tapers” the influence of the individual observations.

Definition 208 A continuous function φ(t) is a testing function of rapid decay,
or taper, if

lim
t→±∞ |t

nφ(r)(t)| = 0 for some n, r ≥ 0 (6.7)

where the rth derivative

φ(r)(t) = d
rφ(t)

dtr
(6.8)

In the Exercises, you’ll find an application of such a taper for FT analysis. Such
a taper can be used to define even more generalized functions, as follows.

Definition 209 A generalized function of slow growth g(t) is defined as a
symbolic function, such that to each testing function of rapid decay φ(t) there
is assigned a finite number to the inner product:

〈g, φ〉 =
∫ +∞

−∞
g(t)φ(t)dt <∞ (6.9)

with the linear properties of additivity and homogeneity. Thus

〈g, a1φ1 + a2φ2〉 = a1〈g, φ1〉 + a2〈g, φ2〉 (6.10)

Remark 210 If φ(t) is a taper, then we can use advanced calculus to show
that φ(t) is absolutely integrable:∫ +∞

−∞
|φ(t)| dt <∞ (6.11)

Hence, the FT of this taper, �(ω), exists.

In the next chapter we’ll discuss the relaxation of this particular restraining
condition of either

∫∞
−∞ |x(t)| dt < ∞ or

∫∞
−∞ |φ(t)| dt < ∞ for the Wavelet

Transform. The Wavelet Transform ψ(t) of x(t) exists, even when x(t) includes
discontinuities, jumps, periodicities and cyclicities – in other words, when x(t)
includes all the phenomena we observe in empirical financial time series! Because
the Wavelet Transform has finite and not infinite support.

But let’s now first define the generalized FT.
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Definition 211 The generalized FT F(ω) of a function of slow growth x(t) is
defined by the commuting integrals∫ +∞

−∞
F(u)φ(u)du =

∫ +∞

−∞
x(u)�(u)du (6.12)

Remark 212 It can be shown that all the properties of ordinary FTs also hold
for the generalized FTs of functions of slow growth (Hsu, 1984; Körner, 1990).

6.2.1 Algebraic properties of FTs

FTs have some very useful properties, which makes it easy to exactly compute
an enormous variety of FTs, which are discussed in a historically very interesting
and enjoyable presentation by Körner (1990). Let F(ω) ↔ x(t) denote the FT
pair. Then it’s easy to prove the following nine properties (cf. Hsu, 1984, for the
particulars of these proofs). In particular, translation = time shifting and scaling =
frequency shifting, will be very useful, when we study empirical financial series
that exhibit long time-dependence, such as the Fractional Brownian Motion (FBM)
defined in Chapter 4. Here follow the nine fundamental properties of FT pairs often
used in theoretical signal processing analysis, and now also in theoretical dynamic
asset valuation:

(1) Convolution in the time domain = multiplication in the frequency domain:

x1(t) � x2(t) = F1(ω)F2(ω) (6.13)

(2) Multiplication in the time domain = convolution in the frequency domain:

x1(t)x2(t) = 1

2π
F1(ω) � F2(ω) (6.14)

(3) Linearity in the time domain = linearity in the frequency domain:

a1x1(t)+ a2x2(t)↔ a1F1(ω)+ a2F2(ω) (6.15)

(4) Translation (= time shifting) = complex exponential decay in the (imaginary)
frequency domain:

x(t − t0)↔ F(ω)e−jωt0 (6.16)

(5) Modulation (= frequency shifting) = complex exponential increase in the
(imaginary) time-domain:

x(t)ejω0t ↔ F(ω − ω0) (6.17)

(6) Scaling up in the time domain = scaling down in the frequency domain, and
vice versa:

x(ct)↔ 1

|c|F
(ω
c

)
(6.18)
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(7) Time-reversal in the time domain = frequency-reversal in the frequency
domain:

x(−t)↔ F(−ω) (6.19)

(8) Symmetry of functions in time and frequency domain:

F(t)↔ 2πx(−ω) (6.20)

(9) Differentiation in the time domain = frequency exponential in the frequency
domain and vice versa:

x(p)(t)↔ (jω)pF (ω) and (6.21)

(−j t)px(t)↔ F (p)(ω) (6.22)

Using the fundamental linearity and time shifting properties, we can now find
the FT of the Geometric Brownian Motion (GBM) as follows:

F(ω) = F[x(t)]
= F[x(t − 1)+ ε(t)]
= F(ω)e−jω + F[ε(t)] (6.23)

Notice the frequency translation of the time shift! This implies that we can
concisely represent the GBM in the frequency domain as follows:

FGBM(ω) = (1− e−jω)−1F[ε(t)] (6.24)

Similarly, the FT of the FBM is modeled in the frequency domain as follows:

FFBM(ω) = (1− e−jω)−dF[ε(t)] (6.25)

We’ll need these spectral representations later in this chapter, when we focus on
the spectral density of the stationary increments of the FBM.

6.2.2 Some exact FTs

Here are some additional important FTs of exact time functions, which can be
easily checked (Hsu, 1984):

(1) The FT of a constant is an impulse function δ(·), which is the first derivative
of the unit step function u(·):

1 ↔ 2πδ(ω) = 2π
du(ω)

dω
(6.26)

(2) The FT of a complex exponential function results in an impulse with a shifted
frequency:

ejω0t ↔ 2πδ(ω − ω0) (6.27)
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(3) The FT of a cosine function consists of the sum of two frequency shifted
impulse functions:

cosω0t ↔ πδ(ω − ω0)+ πδ(ω + ω0) (6.28)

(4) The FT of a periodic function with period T, which, as we have seen, can
always be expressed as a Fourier series of exponential functions, consists of a
sequence of equidistant impulses located precisely at the harmonic frequencies
of the function (cf. Chapter 5):

x(t) =
+∞∑
n=−∞

cne
jnω0t , with ω0 = 2π

T
, (6.29)

↔ F(ω) = 2π
+∞∑
n=−∞

cnδ(ω − nω0) (6.30)

Remark 213 To speed up the calculations by reducing the number of computing
operations, often we implement the so-called Fast Fourier Transform (FFT), which
separates its odd and even harmonics. The vector-matrix implementation of this
FFT, discovered by Cooley and Tukey (1965), provides an interesting advanced
topic in numerical analysis.

6.2.3 Fourier spectra

The operational raison d’être for FTs is to enable the computation of frequency
spectra of any continuous or discrete time series.

Definition 214 The Fourier spectrum F(ω) = F[x(t)] is, in general, complex,
and thus represented by the sum of real and imaginary parts:

F(ω) = R(ω)+ jX(ω)
= |F(ω)|ejφ(ω) (6.31)

where |F(ω)| is called the magnitude (amplitude) spectrum of x(t) and φ(ω) its
phase spectrum.

When x(t) is a real-valued time series (and, empirically, it always is!), then,
using the familiar goniometric identity for a complex exponential,

e−jωt = cosωt − j sinωt (6.32)
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its FT can be rewritten as

F(ω) =
∫ +∞

−∞
x(t)e−jωtdt

=
∫ +∞

−∞
x(t) cos(ωt)dt − j

∫ ∞

−∞
x(t) sin(ωt)dt

= R(ω)+ jX(ω) (6.33)

so that, equating the real and imaginary parts of the complex F(ω), we have the
real terms

R(ω) =
∫ +∞

−∞
x(t) cos(ωt)dt (6.34)

X(ω) = −
∫ +∞

−∞
x(t) sin(ωt)dt (6.35)

which are both easy to compute.

6.2.4 Convolution Theorems

The (general) FT can now be related to the earlier sections of Chapter 5, where we
discussed correlation and convolution, by way of two powerful Theorems. These
Theorems allow convolutions to be replaced by simple products (cf. Hsu, 1984;
Champeney, 1990; Körner, 1990, for the respective proofs). The first Theorem
shows that convolution in the time domain can be replaced by a product in the
frequency domain. The second Theorem shows that convolution in the frequency
domain can be replaced by a product in the time domain.

Theorem 215 (Time Convolution) If F[x1(t)] = F1(ω) and F[x2(t)] = F2(ω)

then

F[x1(t) ∗ x2(t)] = F1(ω)F2(ω) (6.36)

Theorem 216 (Frequency Convolution) If F−1[F1(ω)]= x1(t) and
F−1[F2(ω)]= x2(t) then

F−1[F1(ω) � F2(ω)] = 2πx1(t)x2(t) (6.37)

or, equivalently,

F[x1(t)x2(t)] =
∫ +∞

−∞
[x1(t)x2(t)] e−jωtdt

= 1

2π
F1(ω) � F2(ω)

= 1

2π

∫ +∞

−∞
F1(y)F2(ω − y)dy (6.38)
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Using the second Theorem and setting the frequency ω = 0, we obtain∫ +∞

−∞
[x1(t)x2(t)]dt = 1

2π

∫ +∞

−∞
F1(y)F2(−y)dy

= 1

2π

∫ +∞

−∞
F1(ω)F2(−ω)dω (6.39)

by changing the dummy variable of integration. If x(t) is real valued, then

F(−ω) = F ∗(ω) (6.40)

where F ∗(ω) is the complex conjugate of F(ω). By substitution in the preceding
equation we derive the following financial version of the well-known ergodic
Theorem of Parseval, which provides a crucial link between the risk content of a
financial time series, as measured in the time domain and in the frequency domain,
respectively.

Theorem 217 (Parseval) If the FT F[x(t)] = F(ω), then the risk content
(= second moment) of the aperiodic stationary financial time series x(t) is

E[x(t)2] =
∫ +∞

−∞
[x(t)]2dt

= 1

2π

∫ +∞

−∞
|F(ω)|2dω

=
∫ +∞

−∞
|F(2πν)|2dω (6.41)

where the angular frequency isω = 2πν and the frequency ν is expressed in Hertz.

The quantity |F(ω)|2 is called the risk or power spectrum, or power spectral
density (PSD) of x(t). It is the frequency domain equivalent of risk in the time
domain.

6.2.5 Wiener–Khintchin Theorem

Using the foregoing results, we can now present the FTs of the various covariance
functions.

Corollary 218 If F[x1(t)] = F1(ω) and F[x2(t)] = F2(ω), then

S12(ω) = F[R12(τ )] = F1(ω)F2(−ω) (6.42)

S21(ω) = F[R21(τ )] = F1(−ω)F2(ω) (6.43)

S11(ω) = F[R11(τ )] = F1(ω)F1(−ω) (6.44)

The measures S12(ω) and S21(ω) are referred to as cross-risk or cross-spectral
densities (CSD), and S11(ω) is, as we saw, the risk spectrum or PSD of x1(t).
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If x1(t) is real valued, then

S11(ω) = F[R11(τ )]
= F1(ω)F1(−ω)
= F1(ω)F

∗
1 (ω)

= |F(ω)|2 (6.45)

Thus, we have arrived at the famous Wiener–Khinchin Theorem relating the
autocovariance function of a financial time series to its risk spectrum, and
vice versa.1 Thereby, the time dependence of a time series is translated into its
frequency dependence, and vice versa.2

Theorem 219 (Wiener–Khinchin) The autocovariance function R11(τ ) and the
risk spectral density |F(ω)|2 constitute a FT pair:

|F(ω)|2 = F[R11(τ )]

=
∫ +∞

−∞
R11(τ )e

−jωτ dτ (6.46)

and

R11(τ ) = F−1[|F(ω)|2]
= 1

2π

∫ +∞

−∞
|F(ω)|2ejωτ dω (6.47)

Since for periodic or random variables that exist over the entire time interval
(−∞,∞), the risk contents are infinite,

E[x(t)2] =
∫ +∞

−∞
[x(t)]2dt →∞ (6.48)

the covariance functions, as defined earlier, do not exist as finite numbers, nor do
their FTs. Therefore, pragmatically we must work with truncated, approximating
average covariance functions, based on the assumed ergodicity of the time series,
i.e., the assumed equivalence of the represented time series volatility in the time
and frequency domains.

Definition 220 The average autocovariance function of x1(t) is the limit

R̄11(τ ) = lim
T→∞

1

T

∫ T/2

−T/2
x1(t)x1(t − τ)dt (6.49)

Definition 221 Similarly, the average cross-covariance function of x1(t) and
x2(t) is the limit

R̄12(τ ) = lim
T→∞

1

T

∫ T/2

−T/2
x1(t)x2(t − τ)dt (6.50)
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These definitions assist us to precisely define what we mean by uncorrelatedness
of two time series, which is defined as their linear independence.

Definition 222 Two variables x1(t) and x2(t) are uncorrelated, if we can
decompose their cross-correlation into a product of two independent time
averages:

R̄12(τ ) = lim
T→∞

1

T

∫ T/2

−T/2
x1(t)x2(t − τ)dt

=
[

lim
T→∞

1

T

∫ T/2

−T/2
x1(t)dt

] [
lim
T→∞

1

T

∫ T/2

−T/2
x2(t − τ)dt

]
(6.51)

Then, if one time series, say x1(t), has also a zero average value (e.g. because
it is measured as deviations from the mean)

lim
T→∞

1

T

∫ T/2

−T/2
x1(t)dt = 0 (6.52)

then their cross-correlation equals zero:

R̄12(τ ) = 0 for all τ (6.53)

Thus, uncorrelatedness of two financial time series is empirically easy to verify:
compute the deviations from their means and cross-correlate to see if the result
equals zero. However, this procedure only measures uncorrelatedness = linear
independence, and does not demonstrate anything about nonlinear independence
or global independence, i.e., the kind of independence that financial risk analysts
are currently most concerned about. Global dependence has major consequences
for the way we conduct financial risk measurement, analysis and management if
it does not exist, as we will see in Chapter 12.

Definition 223 For time series with infinite risk content, the average risk of time
series x(t) is defined as the approximation

lim
T→∞

1

T

∫ T/2

−T/2
[x(t)]2dt (6.54)

Definition 224 The risk spectrum or PSD of the financial time series x1(t) is the
FT of the average autocovariance function of x1(t), which does exist, since the
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average autocovariance function is finite. Thus

P(ω) = F[R̄11(τ )]

=
∫ +∞

−∞
R̄11(τ )e

−jωτ dτ (6.55)

Then, of course, the average autocovariance function is the inverse FT of the risk
spectrum or PSD:

R̄11(τ ) = F−1[P(ω)]

= 1

2π

∫ +∞

−∞
P(ω)ejωτ dω (6.56)

These are pragmatic, practical definitions for situations which are likely to
occur. However, these pragmatic definitions can lead to distortions, in particular
when the risk is infinite, as is the case when time series contain discontinuities, or
other singularities. These formulas define only approximations to the information
content of a financial time series and do not provide a complete analysis.

Corollary 225 The average risk (or mean-square value) of a financial time series
x1(t) is given by the integration of the PSD P(ω) over the entire frequency range,
since

R̄11(0) = lim
T→∞

1

T

∫ T/2

−T/2
[x1(t)]2dt

= 1

2π

∫ +∞

−∞
P(ω)dω (6.57)

In the case of a stationary financial time series, it does not matter if we investigate
its risk content in the time domain or in the frequency domain, since they are
equivalent representations. But it does very much matter in which domain we
investigate the risk content when the time series is nonstationary, since then the risk
contents in the time and the frequency domains, respectively, are not equivalent.
They cannot be transformed into each other and have to be looked at simultaneously
to achieve a complete analysis.

Example 226 Figure 6.1 shows the truncated financial risk spectrum of the
Standard and Poor series computed by Granger and Morgenstern in 1963, after
an important trend in the mean is removed, by using moving averages of lengths 80
and 36. In other words, the original time series was nonstationary! The spectrum
was computed at 240 frequency bands, but only the first 100 are shown. A small
resonance peak at 40 months can be observed, but is not statistically significant.
Even after the trend removal, this peak only accounts for slightly less than 10
percent of the total remaining variance. Thus, the component corresponding with
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Figure 6.1 Granger and Morgenstern’s global risk spectrum of Standard and Poor
series, based on annual data, 1875–1952.

the American business cycle of approximately 40 months, although noticeable, is
not of particular importance and is much less pronounced than the components
with resonance periods of five years or more (Granger and Morgenstern, 1963).

Finally, we can now also properly define white noise in spectral terms.

Definition 227 White noise is defined as any random variable whose risk
spectrum or PSD is a constant flat line (= independent of frequency):

P(ω) = σ 2
ε (6.58)

when measured in the 2-dimensional (2D) spectrum-frequency {P,ω}, space.

Thus, white noise is a very specific kind of noise with a particular characteristic:
the flatness of its risk spectrum. Therefore, it cannot be considered “general noise,”
as is often, but erroneously, suggested by statisticians, econometricians, financial
analysts, etc. Later on we will find how “general noise” is visualized and measured
in both the time and frequency domains.

6.2.6 Average financial risk spectrum of FBM

From Chapter 4, we recall that the FBM provides a useful model for long-term
dependent financial time series, whose empirical spectra obey self-similar power
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laws of a fractional order d ∈ (−0.5, 0.5). However, due to the non-stationarity
of these financial pricing processes, it is not clear how to measure their time-
varying spectra, since the classical measurement by Fourier spectra requires the use
of time-averaged measurements based on stationarity. An apparent contradiction
exists between the stationarity assumption upon which the usual Fourier spectra are
based and the fact that time-varying spectra cannot be associated with stationary
processes.

The usual way to approach this difficult measurement issue is as follows.
Although the FBM itself is nonstationary, its increments (and hence its deriva-
tives) are stationary. This allows one to associate well-defined average spectral
representations with the increments of FBMs.

The financial risk spectrum or PSD, of the FBM at frequency zero is the FT of
its ACF, which, according to the Wiener–Khinchin Theorem, is the product of the
two conjugate FTs of the FBM process, as follows. Recall that the FT of the FBM
is modeled by:

FFBM(ω) = (1− e−jω)−dF[ε(t)] (6.59)

Next, apply the two exponential series expansions for ejω and e−jω, with j =√−1, the imaginary number and ω is the angular frequency, and take the limit for
ω→ 0. Then we obtain the FT of the ACF of the FBM as follows:

P(ω) = F[γ (τ)]
= F(ω)F (−ω)
= (1− e−jω)−d(1− ejω)−dF[ε2(t)]
= σ 2

ε (1− ejω)−d(1− e−jω)−d

= σ 2
ε

[
1−

(
1+ jω + (jω)

2

2! + · · ·
)]−d

×
[

1−
(

1− jω + (−jω)
2

2! − · · ·
)]−d

= σ 2
ε

[
−jω + ω

2

2! + · · ·
]−d [

jω + ω
2

2! + · · ·
]−d

∼ σ 2
ε [−jω]−d [jω]−d as ω→ 0

= σ 2
ε ω

−2d (6.60)

Again, for d = 0

P(ω) = σ 2
ε (6.61)

the spectral density of white noise. Thus, the spectral density of the anti-persistent
FBM increments, or fractionally differenced white noise time series with d < 0
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Table 6.1 Risk spectrum of FBM increments

Noise characteristic Difference Spectrum P(ω)

Fractionally differenced
white noise

d < 0 σ 2
ε ω

−2d → 0, ω→ 0

White noise d = 0 σ 2
ε ω

−2d = σ 2
ε

Fractionally integrated
white noise

d > 0 σ 2
ε ω

−2d →∞, ω→ 0

will be zero, when the frequency approaches zero ω→ 0. Vice versa, the spectral
density of persistent FBM increments, or fractionally integrated white noise with
d > 0 will be infinite when the frequency approaches zero ω→ 0, as summarized
in Table 6.1.

Therefore, neither extreme can be observed in a risk spectrum P(ω). But, as
we’ve observed in Chapter 4, there are different degrees of fractional integration
of white noise in between these two extremes. For fractional differentiation of
white noise by d = 0.5, the result is blue noise. For fractional integration of the
white noise by d = −0.5, the result is red noise; for integrating white noise once,
d = 1, the result is brown noise (= Brownian Motion), and for integrating it once
more, d = 2, the result is black noise.

Since the financial risk spectrum of the fractional increments of the FBM is
scaling and proportional to

ω−2d = ω1−2H as ω→ 0 (6.62)

this suggests that the FBM self, which consists of once integrated FBM increments,
has a scaling spectral density proportional to

ω−2(d+1) = ω−2(H+0.5)

= ω−(2H+1) as ω→ 0 (6.63)

since the Hurst exponent H = d + 0.5 (cf. Chapter 4).

Remark 228 Notice that these average financial risk spectra do not depend
on time t . In other words, the average FBM spectra are not time-varying. This
fundamental fact results from the stationarity of the FBM increments combined
with the linearity of the integration!

It is also clear that the financial risk spectrum of a scaled FBM, x(ct), is
frequency-scaling (= characterized by a power law of a fractional order d), which
is in accordance to the fact that its second-order moments, represented by the ACF
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γ (τ) are time-scaling:

γ (τ) ∼ σ 2
ε τ

2d−1 (6.64)

Recall that, according to the scaling property of FTs, there is the transform pair

x(ct)↔ 1

|c|F
(ω
c

)
(6.65)

Thus, the financial risk spectrum of the scaled FBM is

F[γ (τ)] = 1

|c|F
(ω
c

) 1

|c|F
(−ω
c

)

= 1

|c|2P
(ω
c

)

=




σ 2
ε

|c|2
(ω
c

)−2d = c2d−2σ 2
ε ω

−2d = c2H−3σ 2
ε ω

−(2H−1)

for the FBM increments, and
σ 2
ε

|c|2
(ω
c

)−2(d+1) = c2dσ 2
ε ω

−2(d+1) = c2H−1σ 2
ε ω

−(2H+1)

for the FBM self
(6.66)

McCulloch et al. (2001) provide an alternative approach to spectral measures
of the stable distributions of Chapter 3.

6.3 Hurst exponent identification from risk spectrum

It is this frequency scaling property of the FBM, which allows us to compute its
financial risk spectrum to determine the Hurst exponent. How? Plot the logarithm of
the financial risk spectrum P(ω) of the FBM against the logarithm of frequencyω:

ln F[γ (τ)] = ln

[
1

|c|2P
(ω
c

)]

= −(2H + 1) lnω + [(2H − 1) ln[c] + ln σ 2
ε ]

= −b lnω + C (6.67)

The slope coefficient of the resulting negative line is

b = (2H + 1) (6.68)

so that

H = b − 1

2
(6.69)



170 Financial risk measurement

Time lag (minutes)

102

101

100

103
0 10 20 30

Noise level

Exponential decay = 4 minutes

40

A
ut

oc
or

re
la

tio
n 

fu
nc

tio
n

Figure 6.2 Semi-log plot of the autocorrelation function γ (τ) for the S&P500 index,
sampled at a 1-minute time scale.

and the intercept is

C = (2H − 1) ln[c] + ln σ 2
ε (6.70)

With H so computed and the intercept C and the scaling constant c known, we
can even find the value of the noise variance σ 2

ε . This could not be done with
Mandelbrot’s logarithmic plot in Chapter 4. Let’s now look at some empirical
examples.

Example 229 Figure 6.2, displayed also in Mantegna and Stanley (2000, p. 55;
courtesy of Gopikrishnan et al., 1998), provides the semi-logarithmic plot of
the autocorrelation function for the S&P500 index, sampled at the�t = 1 minute
time scale. The straight line corresponds to exponential decay with a character-
istic decay time of τ = 4 minutes. It is apparent that after about 20 minutes the
correlations are at the level of pure noise.

Example 230 Figure 6.3, displayed in Mantegna and Stanley (2000, p. 56;
adapted from Mantegna and Stanley, 1996), shows the spectral density of the
S&P500 index, of which high-frequency minute-by-minute data were recorded
during the four-year period from January 1984 to December 1987. The empir-
ical behavior of the index is clearly described by the linear slope coefficient
λ/2 = (H−1) ≈ −0.5 in the time window from approximately 30 trading minutes
to 100 trading days, corresponding with the independent increment case,H = 0.5.
Such a linear slope coefficient is characteristic for the particular financial mar-
ket investigated. Mantegna and Stanley (2000, p. 56) mention comparable studies
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Figure 6.3 Spectral density of high-frequency data from the S&P500 index.

analyzing daily data on stock indices of New York (the New York Composite index),
Frankfurt (the DAX index), and Milan (the MIB index) exchanges, with the empir-
ical results of λ = −1.04,−1.06 and −1.14, or, equivalently, H = 0.48, 0.47
and 0.43, respectively (Mantegna, 1991). These values show the presence of weak
long-term dependence, in particular, of anti-persistence, since the empirical val-
ues ofH are always slightly lower than 0.5. Based on our own empirical research,
we concur with their conclusion that the strength of such long-term dependence
is dependent on the particular financial market and that it “seems to be larger
for less efficient markets.” Using high-frequency data for the S&P500 index, one
finds that the market’s volatility, which is a measure of the market’s risk, has two
regimes: for very short trading horizons (τ < 30 trading minutes), superdiffusive
(−λ/2 < −0.5), or anti-persistent (H < 0.5) behavior is observed. In the longer
term (30 < τ < 104 minutes = 167 hours = 7 days) the behavior is closer to
diffusive or neutrally persistent (λ/2 = −0.5 or H = 0.5). In the very short-term
λ/2 = −0.8 orH = 0.2 with strong superdiffusive or ultra-anti-persistent behav-
ior, which borders on chaos. This anti-persistent behavior is most likely due to the
fact that in the very short-term the time series has a memory of only a few minutes,
as shown in the preceding example. For another example of spectral analysis of
heavy-tailed data, cf. Mikosch (1998).

6.4 Heisenberg Uncertainty Principle

The fundamental Uncertainty Principle of Heisenberg states that there exists no
time series with finite risk which is compactly supported both in the time and fre-
quency domains.3 Since this principle has important consequences for our financial
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market risk analysis (Los, 2000), we will provide a very simple proof using the
concepts of equivalent time duration and spectral bandwidth.

Definition 231 The equivalent time duration TD of x(t) is defined by

TD = 1

x(0)

∫ +∞

−∞
|x(t)| dt (6.71)

where x(0) �= 0.

Definition 232 The equivalent spectral bandwidthWB of x(t) is defined by

WB = 1

F(0)

∫ +∞

−∞
|F(ω)| dω (6.72)

where F(0) �= 0.

Proposition 233 (Uncertainty Principle of Heisenberg): The product of the
equivalent spectral bandwidth and time duration of a time series x(t) cannot
be less than a certain minimum value.

WBTD ≥ 2π (6.73)

Proof By definition of TD, we have

x(0)TD =
∫ +∞

−∞
|x(t)| dt

≥
∫ +∞

−∞
x(t)dt

=
[∫ ∞

−∞
x(t)e−jωtdt

]
ω=0

= F(0) (6.74)

Similarly, by definition ofWB , we have

F(0)WB =
∫ +∞

−∞
|F(ω)| dω

≥
∫ +∞

−∞
F(ω)dω

=
[∫ +∞

−∞
F(ω)ejωtdω

]
t=0

= 2πx(0) (6.75)
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Thus, we obtain

x(0)TD ≥ F(0) ≥ 2πx(0)

WB
(6.76)

from which we conclude that

WBTD ≥ 2π (6.77)

6.5 Windowed FT for transient price innovations

Classical time series analysis devotes most of its efforts to the design of time-
invariant and frequency-invariant operators, that modify essentially stationary time
series properties. The FT dominates linear time-invariant time series analysis,
because the sinusoidal waves ejωt are the constant eigenvectors of linear time-
invariant difference operators (cf. Chapter 3 for the relevant properties of linear
time-invariant operators). As we discussed earlier, this makes it possible to com-
pute the Hurst exponent and thus to establish some indication about the irregularity
and the time and frequency scaling of financial time series.

Let’s be a bit more precise about this particular aspect of the use of the FT, by
defining the characteristic function of the linear time-invariant operator in terms
of its eigenvalues, i.e., the solutions of its characteristic function (Mallat, 1999).

Definition 234 A function satisfying the equation

�{x(t)} = λx(t) (6.78)

is called an eigenfunction (or characteristic function) of the operator �, and the
corresponding value of λ is called an eigenvalue (or characteristic value) of �.

Definition 235 A linear time-invariant (convolution) operator L is entirely spec-
ified by the eigenvalue H(ω), which is the FT of the linear function h at the
frequency ω:

Lejωt =
∫ +∞

−∞
h(u)ejω(t−u)du

= ejωt
∫ +∞

−∞
h(u)e−jωudu

= ejωtH(ω) (6.79)
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The exponential basis ejωt , which represents a sinusoidal wave, is the eigenvector
of the linear convolution operator L.

Consequently, the eigenfunction of a linear time-invariant system is an
exponential function, because we have the FT pair

x(t) = 1

2π

∫ +∞

−∞
F(ω)ejωtdω (6.80)

and

F(ω) =
∫ +∞

−∞
x(t)e−jωtdt (6.81)

i.e., the Fourier coefficient obtained by correlating x(t) and e−jωt , and thus

Lx(t) = 1

2π

∫ +∞

−∞
F(ω)H(ω)ejωtdω (6.82)

This construction explains the global character of the FT. The linear operator
L amplifies, or attenuates, the sinusoidal component ejωt of x(t) by the transfer
function H(ω), which is the frequency filter of x(t). Since the support of the
sinusoidal wave ejωt covers the whole real line (−∞,+∞), the Fourier coefficient
F(ω) depends on the values x(t) for all times t ∈ R.

It is precisely this global “mix” of information spread over all the times con-
sidered by the set of observations why the FT F(ω) can excellently analyze the
global frequency contents of the irregularity, or true risk, of x(t), but not its local
frequency contents of its irregularity. Thus, we can determine the overall risk level
of the financial investment return series x(t), but Fourier analysis cannot assist us
with the determination of its local risk content, i.e., the market risk level of this
financial series at a particular time t . But this is precisely the kind of risk informa-
tion that fund managers require for proper market risk management by continuous
dynamic hedging!

On the other hand, when each of the stacked frequencies can be precisely iden-
tified, we can produce a frequency or risk analysis that is localized in frequency
as well as in time. Such an approach will require the understanding of the time–
frequency localization of the systematic part of a time series, as already in 1946 had
been achieved by Gábor’s or Windowed Fourier Analysis (Cohen, 1989; Delprat
et al., 1992). In fact, there exist now two time–frequency localization transforms:

(1) the Gábor Transform.
(2) the Wavelet Transform (to be discussed in Chapter 7).

Gábor’s Transform or Windowed Fourier Transform (WFT) replaces the FT’s
infinitely supported sinusoidal wave by the product of a sinusoid and a compact
taper, which is localized in time (Allen, 1977).
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6.5.1 Gábor’s WFT

As we noted in the preceding section, the Uncertainty Principle states that there is
no finite risk time series x(t)which is compactly supported in both the time and fre-
quency domains. In other words, the risk spread of a variable and its FT cannot be
simultaneously arbitrarily small. Motivated by quantum mechanics, the Hungarian
physicist Gábor (1946) defined elementary time–frequency “atoms” or “kernels”
as wave forms that have minimal spread in the time–frequency plane. He demon-
strated the importance of localized time–frequency time series analysis, when he
implemented his invention in the form of the first holograph.4 It took until the 1980s
before his vision came to complete fruition in Wavelet Transforms and (multi-
dimensional) wavelet multiresolution analysis, discussed in Chapter 7 and as now
used in 3-dimensional (3D) image compacting and transmission over the internet.

Definition 236 Gábor atoms (or kernels) are constructed by time translation (by
period τ ) and frequency modulation (by frequency ξ ) of the original time window
g(t):

gτ,ξ (t) = g(t − τ)ejξt (6.83)

such that
∫ +∞
−∞ g2(t − τ)dtdτ = 2π .

Notice that a Gábor atom is the product of a sinusoidal wave ejξt with a finite
risk symmetric window g. Thus, the risk of gτ,ξ (t) is symmetrically concentrated
in the time neighborhood of τ over an interval of size σt , measured by the stan-
dard deviation of |g|2, and it has a frequency center ξ . The atom gτ,ξ (t) can
be viewed as changing analyzing filters which adapt according to the frequency
change in the time series x(t) associated with the frequency ξ in the neighborhood
of time horizon τ . The time and frequency spreads of these atoms are constant.
The whole family of Gábor atoms is generated by time and frequency translations
of one specific atom g(t).

Example 237 Figure 6.4 shows the Gábor atom g0,ξ for three frequencies: a:
high frequency ξ1, b: middle frequency ξ2 and c: low frequency ξ3, (Bendjoya and
Slézak, 1993, p. 235).

Definition 238 The FT of the Gábor atom is a frequency translation by ξ :

Gτ,ξ (ω) = F[gτ,ξ (t)]

=
∫ +∞

−∞
gτ,ξ (t)e

−jωtdt

=
∫ +∞

−∞
g(t − τ)e−j (ω−ξ)t dt

= G(ω − ξ)e−j (ω−ξ)τ (6.84)
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Figure 6.4 Gábor’s atom g0,ξi as a function of time for three frequencies: (a) high ξ1, (b)
middle ξ2 and (c) low ξ3.

Thus, the risk of Gτ,ξ (ω) is localized near the frequency ξ , over an interval of
size σω, which measures the domain where the Gábor resonance coefficientG(ω)
is non-negligible.

The original FT represents a time series as the sum of sinusoidal waves in
which the resonance coefficients are correlation coefficients. As we discussed
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Figure 6.5 Heisenberg boxes of two windowed Fourier atoms gu,ξ and gν,γ .

earlier, these sinusoids are very well localized in frequency, but not in time, since
their support has infinite length (−∞,+∞). This is a consequence of their exact
periodicity. To represent the frequency behavior of a financial time series locally in
time, the time series should be analyzed by functions that are localized both in time
and frequency, i.e., that are compactly supported in both the time and frequency
domains, like Gábor’s atoms.

In a time-frequency plane (t, ω), the risk spread of the atom gu,ξ is measured
in the mean squares sense and can symbolically be represented by the Heisenberg
box illustrated in Figure 6.5. Gábor’s Heisenberg box is centered at (u, ξ) and has
a time dispersion σt and a frequency dispersion σω. Although the shape of this
time–frequency box may vary depending on the time width of the window g, the
Uncertainty Principle proves that its area satisfies the following inequality

σtσω ≥ 1

2
(6.85)

where σt is the standard time deviation and σω the standard frequency deviation
of a time series x(t) ∈ L2.

Remark 239 The area of the Heisenberg box is minimal and this inequality is
an equality if and only if the window, kernel or density function, g is Gaussian, in
which case the atoms gτ,ξ are called Gábor chirps. In other words, g is a Gábor
chirp, if there are constants (τ, ξ, c, b) ∈ R

2 × C
2 such that

gτ,ξ (t) = ce−b(t−τ)2ejξt (6.86)

If the time series x(t) is non-zero with a compact support, then its FT in the
frequency domain cannot be zero on a whole frequency interval. Similarly, if its
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FT is compactly supported, then the time series x(t) cannot be zero on a whole
time interval. Hence, even if the Heisenberg constraint is satisfied, it is impossible
to have a function in L2 space, which is compactly supported both in time and
frequency domain. This means that there cannot exist an instantaneous frequency
analysis for finite risk time series. Thus, time–frequency localization is achievable
only in the mean squares sense as visualized by the Heisenberg box.

We can also represent Gábor’s Transform as a scalar function, with two
arguments, time horizon τ and frequency ξ , as follows.

Definition 240 Gábor’s Transform or WFT correlates (= computes the inner
product of) the time series x(t) with each Gábor atom gτ,ξ (t) to produce the
following resonance coefficients:

G(τ, ξ) = 〈x(t), gτ,ξ (t)〉

=
∫ +∞

−∞
x(t)g∗τ,ξ (t)dt

=
∫ +∞

−∞
x(t)g(t − τ)e−jξ t dt

= 1

2π

∫ +∞

−∞
F(ω)G∗τ,ξ (ω)dω (6.87)

The last equation follows from Parseval’s (ergodic) Formula, since we have
(without proof):

Theorem 241 (Parseval’s Formula)∫ +∞

−∞
x(t)h∗(t)dt = 1

2π

∫ +∞

−∞
F(ω)H ∗(ω)dω (6.88)

Remark 242 For h = x it follows from Parseval’s Formula that∫ +∞

−∞
|x(t)|2dt = 1

2π

∫ +∞

−∞
|F(ω)|2dω (6.89)

i.e., Parseval’s Theorem.

The original time series x(t) can be reconstructed from Gábor’s resonance
coefficients by the following double integral:

x(t) = 1

2π

∫ +∞

−∞

∫ +∞

−∞
G(τ, ξ)g(t − τ)ejξt dξdτ

= 1

2π

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
x(t)g(t − τ)ejξtg(t − τ)e−jξ t dtdξdτ

= 1

2π

∫ +∞

−∞

∫ +∞

−∞
x(t)g2(t − τ)dtdτ (6.90)
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The time series x(t) can thus be viewed as a sum of localized waves weighted by the
profile of the chosen taper or window g. Gábor’s Transform has a constant time–
frequency resolution. This resolution can be changed by rescaling the window g.
It is a complete, stable and redundant representation of the systematic part of the
time series. Hence, it is invertible and easy to model.

6.5.2 Spectrograms: varying spectral densities

Gábor’s WFT can be written both as a time integral and as a frequency integral.
Measuring time-varying harmonics is the most important application of WFTs. For
example, when listening to the human voice, we perceive sounds with frequencies
that vary in time. They are clearly nonstationary: they are modulated over time.

A spectral line of x(t) creates high amplitude windowed Fourier resonance coef-
ficients S(τ, ξ) at frequencies ξ(τ ) that depend on the time τ . The time evolution
of such spectral components is therefore analyzed by following the location of
such large amplitude coefficients. These color or grey level coded visualizations
of the amplitude resonance coefficients are called spectrograms.

Definition 243 A spectrogram is the squared modulus of the WFT, i.e., the time
varying spectral density

PS(τ, ξ) = |S(τ, ξ)|2

=
∣∣∣∣
∫ +∞

−∞
x(t)g(t − τ)e−jξ t dt

∣∣∣∣
2

(6.91)

A spectrogram measures the risk of financial time series x(t) in the time–
frequency neighborhood of (τ, ξ) specified by the Heisenberg box of gτ,ξ (t). This
means that we can now measure and visualize the localized risk of a financial time
series, instead of the average risk.

6.5.3 Examples of spectrograms and sonograms

We will now show a few nonfinancial and financial examples, using these new
technologies of signal processing, like the creation of histograms and spectrograms
of the increments of financial rate of return series or the increments of foreign
exchange rate series.5 We will conclude that such financial increment series consist
of series of singularities or jumps, with random arrival times and with modulated
amplitudes, i.e., non-stationarities, like the sonogram of human laughter.

Example 244 Figure 6.6 presents Gábor’s time–frequency analysis using a grey
level coding, of the time series presented in Chapter 5. (Adapted from Bendjoya
and Slezak, 1993, p. 236.) The highest value of the Gábor resonance coefficients
are coded in black and the lowest value in white. The Gábor Transform can detect
the frequencies present in the time series x(t) and also their temporal location.
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Figure 6.6 Time–frequency analysis by the Gábor Transform with σ adapted to the time
coherence of frequencies ω1 and ω3. The Gábor resonance coefficients are
coded in grey level, with the highest values in black and the lowest values in
white. The abscissa represents time and the ordinate the frequency. The highest
frequency with the shortest time coherence is worse detected than the other,
lower frequencies for which the window size is well suited.

However, it’s also clear from this spectrogram that the Gábor Transform has
difficulty with detecting frequencies with a coherence shorter than the size of the
window. In this spectrogram, the lower coefficients are associated with the highest
frequency ω2 present in the time series with a very short coherence T2. Such high
frequency could be interpreted as “noise” instead of a bona fide systematic signal.
The contribution of the short coherence frequency is very easily underestimated. In
short, Gábor’s WFT is well suited only for financial time series with a coherence
at least equal to and preferably larger than the temporal size of the window.

Example 245 Daubechies (1992, p. 5) shows three spectrograms PS(τ, ξ) of
the same periodic time series f (t), with only two discontinuities or unit steps
u(t) where the arrows are, as in Figure 6.7. The spectrograms show that the
basic time series consists of the sum of two sinusoidal time series each with a
different frequencies of 500 Hz and 1,000 Hz, respectively. The two discontinuities
are clearly detected and show up as impulses δ(t) in the spectrograms, cutting
through all frequencies. Notice the demonstration of Heisenberg’s Uncertainty
Principle occasioned by three widths of windows g: in the first spectrogram of
panel (b): the emphasis is on precise determination of the basic frequencies of
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Figure 6.7 Signal, spectrograms and scalogram (a) the signal f (t). (b) Three spectro-
grams or WFTs PS(τ, ξ) of f (t) with three different window widths. Actually
ln |S(τ, ξ)| is plotted, using grey levels, high values = black, zero = white,
intermediate grey levels are assigned proportional to ln |S(τ, ξ)| in the time t
(abscissa), frequency ω (ordinate) plane. (c) Wavelet Transform PW(τ, a) of
f (t). To make the comparison with (b) the |W(τ, a)| is plotted with the same
grey level coloration and a linear frequency axis (i.e., the ordinate corresponds
to a−1).

the sinusoids, but this blurs the precise localization of the impulses. Going to the
right, the precision of the localization of the impulses is increased, but this blurs
the precise determination of the basic frequencies. In panel (c): we’ve an example
of a wavelet-based scalogram, which will be discussed in Chapter 7. A scalogram
is an excellent devise for time localization of transient events, but is less useful for
the precise determination of basic frequencies. Thus spectrograms and scalograms
should be used in tandem for a complete time–frequency analysis of financial time
series.

Example 246 Figure 6.8 demonstrates that the spectrogram PS(τ, ξ) is a great
device to visualize non-stationarity, in particular of time-varying frequencies, or
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Figure 6.8 Spectrogram PS(τ, ξ) of time series with two superimposed time-varying fre-
quencies. Dark areas indicate large amplitude resonance coefficients |S(τ, ξ)|2.

so-called “chirps.” The time series of T = 1,000 observations at the top is
analyzed in the spectrogram below it. The time series includes a linear chirp,
whose frequency increases linearly over time, a quadratic chirp, whose frequency
decreases quadratically over time, and two modulated Gaussian noise functions
located at t = 512 and t = 896 (Mallat, 1999, p. 72).

Example 247 Human speech time series are very high frequency series, highly
nonstationary and they are known to exhibit frequency- and phase-coupling
phenomena, i.e., cross-correlation phenomena over time. The following analy-
sis was performed on a data set of T = 1,400 observations by some of the
Higher-Order Spectral Analysis (HOSA) Toolbox MATLAB®-files to illustrate such
non-stationarity features (Swami et al., 1998, pp. 1–122/125). Time is measured in
milliseconds. Figure 6.9 shows the sonogram of the laughter data in the first panel.
The corresponding binned histogram in the second panel shows that its univariate
frequency distribution is asymmetrical. The mean, standard deviation, skewness
and kurtosis (cf. Chapter 1) are computed as 0.5621, 536.69, 0.1681 and 1.3277,
respectively, indicting that these data are non-Gaussian, and that the univariate
probability density function (p.d.f.) is not symmetrically distributed. Figure 6.10
shows the spectrogramPS(τ, ξ) of the laughter chirp. An FFT length of 512 obser-
vation is used, so that the (Hanning) taper g has length 512/2 = 256, with an
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Figure 6.9 Laughter data and their global histogram.

overlap of 240 observations. The spectrogram shows three dominant frequency
tracks, approximately around 550, 1,100 and 1,550 Hz. The last frequency track
or formant begins around 30 milliseconds. Additional fragments are visible around
1,800 Hz and 2,100 Hz. The spectrogram indicates that human laughter is essen-
tially harmonic and that its frequencies appear to be approximately harmonically
related. However, not all its fundamental frequencies occur at the same time!

Example 248 Figure 6.11 shows that data for the changes in the three-month
Treasury Yield contains numerous one-day spikes, which strongly suggests that
such series are not continuous, but that they are highly discontinuous (Chapman
and Pearson, 2001, p. 86). They can be characterized as series of singularities with
modulated amplitudes, i.e., a nonstationary jump process, with random arrival
times of these jumps. These financial time series of changes in short-term cash
rates of Figure 6.11 look very much like the sonogram of the high frequency non-
stationary laughter data in Figure 6.9. However, the series of yield increments are
unevenly distributed series of modulated singularities, while the laughter data is a
sonogram with a continuous sound wave, consisting of superimposed sound waves
of a few fundamental frequencies. This small, but crucial difference is not observ-
able from the binned frequency distributions, which look very much alike. Under
close inspection it is somewhat visible in the time domain. But it would be most
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clearly visible in the time–frequency spectrogram. We’ve not been able to obtain
this particular yield data set and to produce a spectrogram of it. But in the follow-
ing example of foreign exchange rate (FX) increments we were able to analyze a
very similar data set. It will show that FX increments are not like laughter, since
there are no natural harmonics identifiable in the data. The FX increments consist
of series of singularities (for which we can compute and visualize a singularity
spectrum). It is a clear example of the situation where the frequency distributions
of the FX increments and of laughter are similar, but where their respective time
distributions are completely different.

Example 249 Figure 6.12 shows the comparison between the modulated spec-
trogram PS(τ, ξ) = |S(τ, ξ)|2 of minute-by-minute FX data compared with the
flat spectrogram of white noise. We compare 10,800 increments of the empirical
German Deutschemark DEM/US Dollar (USD) rate in the first week of June 1997
in the left panel with the same number of observations on simulated white noise in
the right panel with the same constant variance as the FX increments. The frequen-
cies are standardized between 0 and 1 and are measured by the vertical axis, while
the time intervals are measured by the horizontal axis. The lowest frequencies are
at the bottom and the highest frequencies at the top. Notice, first, that the German
FX increments have low financial risk (light grey and white) in the low frequencies
and high financial risk (dark grey and black) in the high frequencies: the risk spec-
trum is modulated over time. The series is nonstationary. In contrast, the white
noise has a constant financial risk over all frequencies and is evenly distributed
over time: it is clearly stationary and has a flat spectrum. The financial risk of the
German FX increments is intermittently distributed over time. The financial risk
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of the white noise is evenly distributed over time. Thus, to emphasize, this time–
frequency visualization shows that the German FX increments in Figure 6.12 are
nonstationary, or modulated: their frequency distribution varies over time. More-
over, the German FX increments are unevenly distributed over time. In contrast:
white noise is stationary, or unmodulated, and evenly distributed over time. This
empirical analysis clearly calls into question the use of the GBM for the modeling
of FX prices. In Chapter 8 we will see that scalograms improve the time location
of the spectrograms and that such scalograms contain information about these
singular FX increments, which can be extracted from the scalogram/spectrogram
by modeling the FX process as an FBM.

6.6 Software

The computations of the following Exercises can be executed by using Benoit
1.3: Fractal System Analysis for Windows, Trusoft International Inc., 204 37th
Ave. N #133, St Petersburg, FL 33704 Tel (813) 925-8131; Fax (813) 925-
8141; sales@trusoft-international.com. See http://www.trusoft-international.com
for details.

They can also be executed by using the MATLAB® Signal Processing
Toolbox and the MATLAB® HOSA Toolbox (Swami et al., 1998). Both
Toolboxes are available from The MathWorks, Inc., 24 Prime Park Way
Natick, MA 01760-1500, USA. Tel (508) 647-7000; Fax (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

The HOSA Toolbox (2.0.3) of Nikias and Petropulu (1993) is a collection of
MATLAB® M-files containing specialized tools for signal processing with higher
order spectra. It was created by Jerry M. Mendel, Chrysostomos L. (Max) Nikias
and Ananthram Swami of by United Signals and Systems, Inc. The toolbox is
a collection of MATLAB® routines whose primary features are functions for:
higher-order spectrum estimation either by conventional or parametric approaches;
magnitude and phase retrieval; adaptive linear prediction; harmonic retrieval and
quadratic phase coupling; time-delay estimation and array signal processing.

6.7 Exercises

Exercise 250 Using the Benoit 1.3 software, compute the Financial Risk Spec-
trum for (1) the original share prices of Chapter 1, (2) their total rates of return, and
(3) the first differences of the rates of total return. Use initially simple averaging
of the spectrum. Then try tapering with a rapid-decay function to avoid Gibbsian
edge effects and to minimize spectral leaking. Spectral leaking is the phenomenon
that financial risk is added to the estimate at some wave number from neighboring
wave numbers. In that case, there is no sharp discrimination between the risk
levels at different frequencies. Spectral leaking is a particular concern if the spec-
trum is very red, i.e., if the long-wavelength components have greater risk than the
short-wavelength components. This is always the case for self-affine traces, like
the globally dependent financial time series, like we discuss in this book.
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Exercise 251 Run MATLAB® Help, Help Desk (HTML), Online Manuals (in
PDF). In the Signal Processing Toolbox User’s Guide, study and implement
the examples in MATLAB® for the DFT (pp. 1/43–1/45), Spectral Analysis
(pp. 3/5–3/11), and FFT-based Time –Frequency Analysis (pp. 4 and 26). Find
out what is a risk spectrum or PSD (= power spectral density)? What is a CSD (=
cross-spectral density)? What is a periodogram? What is the Nyquist rate? What
is a spectrogram?

Run the following MATLAB® Help, Examples and Demos, Toolboxes, HOSA,
Case Studies:

Exercise 252 The classical sunspot data series (annual, 1700–1987): notice the
two representations of the data, as time series and as histogram. Why is differenc-
ing helpful? Interpret the summary statistics of the histogram: mean, variance,
skewness and kurtosis. How and why do we compute a singular value plot? Inter-
pret the various representations of the risk spectrum and the harmonic analysis.
Are the sunspot data periodic or cyclic? If periodic, what is their period? If cyclic,
why? What’s the difference between periodicity and cyclicity? Is the business cycle
of GDP returns periodic or cyclic?

Exercise 253 Canadian lynx data (annual, 1821–1934): do the same as for the
sunspot data.

Exercise 254 Speech data (laughter): this is an example of high-frequency (HF)
data. What is a spectrogram? How do you interpret it? How can you determine if
a series is stationary and why is that important? How do you determine if data is
harmonic? How do you determine if data is Gaussian? What is linearity and how
do you determine it (cf. Chapter 3)? What is a bi-spectrum and why it is useful?
What is a cumulative spectrum? What is quadratic frequency coupling? What is
self-coupling? What other terms don’t you know and do you need to define?

Exercise 255 Run MATLAB® Fourier analysis on a data set of one day of
High Frequency Foreign Exchange (HFFX tick-by-tick and minute-by-minute)
data for some Asian currencies, available from the author, or from an interna-
tional commercial, currency-trading bank like ABN-AMRO. Compute histograms
and their summary statistics, risk (power) spectra and cumulative spectra. Con-
duct harmonic analysis on all series and determine the Fourier “signature,”or
“fingerprint,”of each of the nine series, using MATLAB®’s programming facilities
(You must also figure out how the EXCEL Link works to feed the raw input data
in). Compute a spectrogram. Determine if the series are stationary, harmonic and
Gaussian or not. Compute a bi-spectrum and determine if the HFFX series are
linear.

Notes

1 The American mathematician Norbert Wiener (1894–1964), is best known for his devel-
opment of an interdisciplinary approach to the study of communication and control
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processes in living organisms and machines, for which he coined the word cybernetics.
He was doing work on automated control systems for anti-aircraft guns during the Sec-
ond World War, when he wrote his famous “yellow peril” report on the optimal tracking
solution in the frequency domain. Wiener also contributed to the theory of stochastic
processes and the theory of Brownian motion, by constructing a rigorous mathematical
description of physical processes that are subject to random change. He helped build
the mathematics department at the Massachusetts Institute of Technology (MIT) into an
outstanding research facility and taught there from 1919 to 1960.

2 Before Aleksandr Yakovlevich Khinchin graduated in 1916 he had already written his
first paper on a generalization of the Denjoy integral. This paper began a series of publi-
cations by Khinchin on the properties of functions retained after deleting a set of density
zero (probability zero) at a given point. He summarized these results in Fundamental
Mathematica in 1927. In that same year he became a professor at Moscow University
and published his Basic Laws of Probability Theory. Between 1932 and 1934 he laid
the foundations for the theory of stationary random processes, culminating in a major
paper in Mathematische Annalen in 1934. At Moscow University, Khinchin build the
influential school of probability theory, together with Kolmogorov and Gnedenko. From
the 1940s on he was interested in the theory of statistical mechanics and he helped to
develop Shannon’s ideas on information theory. Khinchin published his famous Mathe-
matical Principles of Statistical Mechanics in 1943 and in 1951 he extended it into his
Mathematical Foundations of Quantum Statistics. It included his fundamental treatment
of local limit theorems for sums of identically distributed random variables.

3 German theoretical physicist Werner Karl Heisenberg (1901–1976) was one of the leading
scientists of the twentieth century. The physical principles underlying the mathematics
of quantum mechanics remained mysterious until 1927, when Heisenberg – following
conversations with Bohr and Albert Einstein – discovered the uncertainty principle. An
important book of Heisenberg published in 1928, The Physical Principles of Quantum
Theory, described his ideas. The previous year he had become a professor at the University
of Leipzig, and in 1932 he was awarded the Nobel Prize for physics. He remained in
Germany during the Nazi period and became director of the Kaiser Wilhelm Institute,
also heading the unsuccessful German nuclear weapons project. In 1958, Heisenberg
became director of the Max Planck Institute for Physics and Astrophysics. He spent his
later years working toward a general theory of subatomic particles.

4 The British scientist and inventor Dennis Gábor was born in Budapest, Hungary (1900–
1979) and won the Nobel prize for physics (1971) for his invention (in 1947) and later
development of holography, a means of numerically producing 3D photographic images
without using a lens. Gábor began his career as an industrial research engineer in Germany
but went to England with the rise of the Nazis in 1933. He began teaching in 1949 at the
Imperial College of Science and Technology in London and became professor of applied
electronic physics in 1958. In 1968, he was appointed staff scientist at CBS Laboratories
in Stamford, Connecticut and stayed in the United States.

5 A recent interesting example of the application of the WFT in options markets is
Benhamou (2002) of Goldman Sachs International, Fixed Income Strategy, Swaps, Divi-
sion in London, who is impressed by the non-lognormal densities of discrete Asian options
and examines the effects of fat-tailed distributions on price as well as on the delta. Using
this technology he finds that fat tails lead to larger jumps in the (hedging) delta.
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7 Wavelet time–scale analysis
of risk

7.1 Introduction

In this chapter we continue to simultaneously analyze the marginal distributions
and the temporal dependence of investment returns, as in Chapter 6, but we do it in
a time–scale frame of reference, instead of in a time–frequency frame of reference.
Scale is proportional to the inverse of frequency: a ∼ 1/ω.

Our basic model of analysis for the investment returns and foreign exchange rates
is again the Fractional Brownian Motion (FBM) presented earlier in Chapter 4. In
that chapter we discussed the analysis of stationary and of slowly varying nonsta-
tionary financial time series. In this chapter we discuss the analysis of financial time
series that contain numerous transient, nonstationary characteristics, such as drifts,
trends, discontinuities in higher derivatives of the series, the beginnings and ends
of particular events, as well as the self-similarity and scaling exhibited by the FBM.

As we discussed in Chapter 5, classical Fourier analysis is periodic wave analy-
sis. It expands signals or functions (of time) in terms of sinusoidal basis functions,
or, equivalently, in terms of complex exponentials. Therefore, it is especially
suited for the harmonic analysis of periodic, time-invariant, or stationary phenom-
ena. Next, in Chapter 6, we approached the analysis of nonstationary phenomena
in a time–frequency frame of reference by breaking the data set up into a sequence
of finite horizon “windows,” and implemented Fourier analysis to each consecu-
tively overlapping window, in a moving average fashion. The problem with the
windowed approach is that the Gábor–Fourier Transforms (FTs) are still not strictly
localized. This non-localization leads to approximation, “time-smearing,” and thus
some time ambiguity of the analytic results.

In contrast, the wavelets discussed in this chapter comprise a complete set of
finite basis functions, precisely localized in both time and frequency (or scale),
which, in linear resonance combinations, can provide an extremely flexible,
efficient and complete representation of a time series.

These wavelet basis functions have their risk concentrated in time. When cor-
related with a time series, the magnitudes of the resulting wavelet resonance or
correlation coefficients provide a tool for the analysis of nonstationary, transient,
rapidly or sharply developing dynamic processes (Wang, 1995; Ogden and Parzen,
1996). Such nonlinear dynamic phenomena often incorporate scaling behavior.
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Wavelets are very good tools for detecting, quantifying and modeling scaling
behavior at various resolutions. Thus, wavelet Multiresolution Analysis (MRA)
is an improvement over Gábor’s Windowed Fourier Analysis. By using non-
overlapping, scaling and shifting windows wavelet MRA localizes the significant
resonance correlations accurately, both in time and in frequency.

This chapter is heavily indebted to signal processing engineers and mathemati-
cians like Mallat (1989a,b,c; 1999), Bruce et al. (1996), Burrus et al. (1998),
Burke-Hubbard (1994, 1998), Flandrin (1989, 1992), Jawerth and Sweldens
(1994), Kaplan and Kuo (1993), Rioul and Vetterli (1991), and Strang (1994).
Holschneider (1995) of the Centre National de la Recherche Scientifique (CNRS =
National Center for Scientific Research) in Marseille, France, and Cohen and
Kovacevic (1996) provide excellent and detailed mathematical overviews of
wavelet analysis, as do Benedetto and Frazier (1994). The Wavelet Transform
(WT) was first introduced by Morlet et al. (1982) to obtain time–frequency infor-
mation from seismic time series. The two (already) classic texts in wavelet theory
are written by two mathematical founders of the subject: Yves Meyer (1990) and
Ingrid Daubechies (1992). Meyer’s book requires a research-level background in
mathematics, but Daubechies’ text is acessible to a somewhat wider audience.
Simpler introductions to wavelets, using only linear algebra, can be found in Chui
(1992a) and in Frazier (1999).

In the meantime, wavelet analysis and its applications have become a truly inter-
disciplinary research methodology. Excellent first introductions to bridge the still
existent chasm between signal processing and statistical analysis using wavelets
can be found in Chui (1992b) and in Ogden (1997). In finance, this ingenious
wavelet analysis has already provided us with the tools to identify and, perhaps
even forecast, the pricing and trading processes that characterize our financial
markets. The first instances of this new empirical analysis are only now slowly
emerging in the financial literature, although much confusion remains regarding
what the best ways are to use these powerful analytic signal processing tools in
finance (Jensen, 1997). This situation is not unlike when the first instances of
econometrics appeared in economics 60 years earlier.

But there is no doubt that wavelet MRA is extremely powerful and will lead to
many new discoveries in both finance and economics (cf. Ramsey et al., 1995;
Ramsey and Zhang, 1996; Ramsey and Zhang, 1997; Aussem et al., 1998;
Ramsey and Lampart, 1998a,b; Gençay et al., 2001), as it already has in med-
ical and biomedical, seismic and oceanographic signal and image processing, in
quantum mechanics and asteroid family identification from cluster analysis, mete-
orology and turbulence research (Ruskai et al., 1992; Meyers et al., 1993; Lau and
Weng, 1995).

Wavelets have been used to solve serious electronic communications prob-
lems and, combined with fractals, they have been applied to time series that
are chaotic, as we will discuss in Chapter 8. Since wavelets are self-similar and
scaling, there is a natural affinity between wavelet MRA and fractal models,
in particular in the research of the self-similar cascading risk levels of the vor-
tices in turbulence research (Massopust, 1994; Wornell, 1995), as we will see in
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Chapter 11. Moreover, the use of wavelets as basis functions for the discretization
and numerical solution of nonlinear diffusion equations (e.g. used in the valua-
tion and dynamic hedging of American and exotic options) have already achieved
excellent success (Bendjoya and Slezak, 1993; Meyer, 1993).

7.2 Wavelet analysis of transient pricing

Wavelet analysis has a diverse historical background. In reflection seismology
in the 1970s and 1980s, Morlet et al. (1982) found that modulated pulses sent
underground have a time duration that is too long at high frequencies to separate
the reflections of fine, closely spaced layers of rock, because of the Heisenberg
Uncertainty Principle (cf. Chapter 6). Instead of emitting pulses of equal time
and frequency duration, he then thought of sending shorter waveforms at high
frequencies. Such waveforms are obtained by scaling a single basis function, called
a (Morlet) wavelet.1

Alex Grossman of the Marseille Theoretical Physics Center recognized in
Morlet’s approach some ideas that were close to his own analysis of coherent
(= correlating) quantum states (Grossman and Morlet, 1984). Thus, nearly forty
years after Gábor et al., reactivated a collaboration between theoretical physics
and signal processing, this ultimately led to the formalization of the Continuous
Wavelet Transform (CWT).

The basic ideas of wavelet time–scale analysis were already familiar to math-
ematicians and engineers working with the harmonic Fourier analysis discussed
in Chapters 5 and 6. Thus, the acceptance of wavelets was rather rapid within
the community of signal processing engineers. Wavelet analysis is now invading
other applied fields in cognitology, biology and medicine, like computer vision,
machine sensors, neurology, e.g., the study of electroencephalographs (EEGs) to
find extreme brain waves, and in cardiology, e.g., the study of electrocardiograms
(ECGs) to identify cardiac arrhythmias (Aldroubi and Unser, 1996).2

Wavelet analysis has now also reached the financial markets, to determine the
periodicities, aperiodic cyclicities, intermittencies and arrhythmias of the financial
time series produced in great abundance by these markets. It’s our expectation that
a study of the spectrograms and scalograms of the financial markets can assist us
with their financial and economic diagnosis to prevent financial crises and other
market inefficiencies (Jensen, 1997).3

The specific mathematical methods of wavelet analysis have been developed
mainly by the French mathematician Yves Meyer (1985, 1993) and his colleagues.
Complete wavelet MRA was discovered by Stéphane Mallat in 1988 (Mallat,
1989a,b). Since then, research on wavelets has become truly international. It is
particularly active in the United States, where it is led by the work of math-
ematicians and scientists such as Ingrid Daubechies at Rutgers University and
AT&T Bell laboratories, and Ronald Coifman and Victor Wickerhauser at Yale
University (Coifman and Wickerhauser, 1992; Wickerhauser, 1994; Buckheit and
Donoho, 1995).
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After a lapse of more than thirty years, the thread of analyzing the fractality or
self-affinity of financial-economic time series was picked up by Ramsey and Zhang
(1996, 1997) at the Courant Institute of New York University by implementing
wavelet analysis. It is currently a wide open field of research, ripe for a more
complete exploration by students in finance and economics (Gençay et al., 2001).

7.2.1 Wavelet Transform

Let’s see how wavelet analysis works. Similar to the windowed Fourier Trans-
form (WFT), the WT decomposes a 1-dimensional (1D) time series into
2-dimensional (2D) time–scale (∼ frequency−1) space. In particular, while Fourier
analysis breaks down a time series of investment returns into constituent orthogo-
nal sinusoids of different frequencies (= constant periodicities), wavelet analysis
breaks down such a time series into constituent orthogonal wavelets of different
scales.

Similar to the Gábor Transform, the WT replaces the basic sinusoidal waves
of the FT by a family of basic wavelets generated by translations and dilations of
one particular wavelet atom. Figure 7.1 compares an infinite sine wave basis for
Fourier analysis with a finite Daubechies(20) wavelet basis.

Definition 256 A continuous wavelet atom ψτ,a(t) is a wave function of zero
average, centered around amplitude zero, with finite risk:

E{ψτ,a(t)} =
∫ +∞

−∞
ψτ,a(t)dt = 0 (7.1)

which is translated by a limited time interval τ and scaled, or dilated, by a scale
parameter a as follows:

ψτ,a(t) = 1√
a
ψ

(
t − τ
a

)
(7.2)

This scaled and translated wavelet is time centered around τ , like the Gábor
atom. If the frequency center of ψ is η, then the frequency center of the dilated

(a) (b)

Figure 7.1 (a) A sine wave and (b) a Daubechies’ wavelet ψD20.
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Figure 7.2 Self-similarity of wavelets: translation (every fourth k) and scaling of a
wavelet ψ .

wavelet is ξ = η/a (thus the scale a ∝ 1/ξ ). Figure 7.2 shows the translation
and scaling of a Daubechies(4) wavelet, which we’ll define later in this chapter.
A continuous wavelet is simply a finite risk function with a zero mean. Besides
its scaling and dilating Heisenberg box, the most important feature of a wavelet is
the number of its vanishing moments:

∫ +∞

−∞
t rψ(t)dt = 0 for 0 ≤ r < n (7.3)

This vanishing moments property of wavelets makes it possible to analyze the local
regularity of a time series x(t). A theorem characterizes fast decaying wavelets
with r vanishing moments as the rth derivatives of a fast decaying function (cf.
Chapter 6 for such testing functions of rapid decay, or tapers). We will meet these
fast decaying wavelets again in Chapter 8, when we discuss the crucial Lipschitz
irregularity analysis.

Usually wavelet analysis is done by orthonormal wavelets, to effectuate the
completeness, or exhaustiveness of the analysis.
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Definition 257 An orthogonal waveletψτ,a(t) is a wavelet with the orthogonality
property

∫ +∞

−∞
ψτ,a(t)ψv,b(t)dt = 0 for τ �= v or a �= b (7.4)

Definition 258 An orthonormal wavelet ψτ,a(t) is an orthogonal wavelet with
the normalization∫ +∞

−∞
ψτ,a(t)ψ

∗
τ,a(t)dt =

∫ +∞

−∞
|ψτ,a(t)|2dt = 1 (7.5)

These few introductory definitions enable us now to define the CWT, which
forms the basis for wavelet MRA.

Definition 259 The CWT of x(t) at position τ and scale a is an inner product
computed by correlating (or convoluting) the time series x(t) with a wavelet atom

W(τ, a) =
∫ +∞

−∞
x(t)ψ∗τ,a(t)dt

=
∫ +∞

−∞
x(t)

1√
a
ψ∗
(
t − τ
a

)
dt

= x(t) � ψτ,a(−t) (7.6)

Thus, the CWT resonance coefficient is the correlation (convolution) between
the time series and the appropriate wavelets, as in Figure 7.3. In a (Morlet) Wavelet
Transform, a wavelet is correlated with different sections of a financial time series
x(t). The inner product of a section and the wavelet is a new function. The volume
of the area delimited by that function and computed by the integral is the wavelet
resonance (or correlation) coefficient. Sections of the time series x(t) that look like
the wavelet give large resonance coefficients, as seen in Figure 7.3(c) and (d). (The
(scalar) product of two negative functions is positive.) Slowly changing sections
of x(t) produce small resonance coefficients, as seen in (e) and (f). Accordingly,
the time series x(t) is analyzed at different scales, using wavelets of different
widths.

Thus, the dilating and translating wavelet atoms can be used as the orthonor-
mal basis for a unique, complete observation system, which allows continuously
varying levels of resolution, like a microscope. Similar to Gábor’s WFT, a WT can
measure the time–frequency variation of spectral components, but it has a sharper,
more localized time–frequency resolution than the WFT. One of the reasons is that
wavelets tend to be irregular, fractal and asymmetric, while sinusoids are smooth,
periodic and symmetric (Bruce et al., 1996).

The CWT can operate at any scale, from that of the original financial time
series up to some maximum scale, which is determined by trading off the need for
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 7.3 Wavelet coefficients are “correlation” or “resonance” coefficients. Here a
wavelet is correlated with an irregular signal. Different sections of the signal
produce different resonance coefficients.

detailed analysis with available computational power. The CWT is not only conti-
nuous in terms of scaling, it is also continuous in terms of shifting (translation):
during computation, the analyzing wavelet ψτ,a(t) is shifted smoothly over the
full domain of the analyzed series x(t). When done, one has computed the wavelet
resonance coefficients produced by different sections of the signal, translated by
τ , and at different scales a.

The CWTW(τ, a) has four very useful mathematical properties:

(1) It’s linear:W(τ, a){γ1x1(t)+ γ2x2(t)} = γ1W(τ, a){x1(t)}
+γ2W(τ, a){x2(t)};

(2) It’s invariant under translationW(τ, a) = W(τ − τ0, a);
(3) It’s invariant under dilationW(τ, a) = (1/k)W(kτ, ka), using k = 1/

√
a;

(4) It’s localized in time and frequency.

How to make analytic sense of the resulting multitude of wavelet resonance
coefficients? How can we interpret them? Usually one makes a visualization plot
in which the abscissa represents the position t−τ along the time axis, the ordinate
represents the scale a, and the grey scale or color at each (τ, a) point represents
the magnitude of the wavelet coefficient |W(τ, a)| as in Figure 7.4 (This is a grey
scale example of a scalogram, defined in Section 7.2.3). These plots of wavelet
coefficient resemble an irregular surface viewed from above. You can also represent
the same coefficients in a 3-dimensional (3D) plot as in Figure 7.5. Notice the slope
of the ridges from the small-scale to the large-scale coefficients. The maxima of
these ridges are the maxima lines. The speed of their decay from the large to the
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Figure 7.4 A scalogram: a plot of the magnitude of wavelet coefficients.
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Figure 7.5 A 3D scalogram: a plot of the magnitude of the wavelet coefficients in three
dimensions.

small scales can be used for very sophisticated irregularity analysis of singularities
and to compute singularity spectra, as we will see in Chapter 8.

By applying Parseval’s Formula (cf. Chapter 6), the CWT resonance coefficient,
which is a time integral, can also be written as a frequency integral (Walker, 1997):

W(τ, a) =
∫ ∞

−∞
x(t)ψ∗τ,a(t)dt

= 1

2π

∫ ∞

−∞
F(ω)�∗τ,a(ω)dω (7.7)
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where F(ω) is the FT of x(t) and�∗τ,a(ω) is (the complex conjugate of) the FT of
the wavelet atom ψτ,a(t):

�τ,a(ω) =
√
a�(aω)ejωτ (7.8)

In the time integral, the financial time series (e.g. of investment returns) x(t)
is correlated with the wavelet ψτ,a(t). Its risk is concentrated in a positive time
interval centered at τ . In the equivalent frequency integral, the FT of the time series
F(ω) is correlated with the FT of the wavelet�τ,a(ω). This means that�(ω) = 0
for ω < 0. The risk of �τ,a(ω) is concentrated over a positive frequency interval
centered at τ/a, whose size is scaled by a−1.

7.2.2 Relationship between frequency and scale

In the time–frequency plane, a wavelet atomψτ,a is again symbolically represented
by a Heisenberg box centered at (τ, η/a), as in Figure 7.6. The time and frequency
spread are proportional to a and a−1, respectively. When the scale a varies, the
height and width of the Heisenberg rectangle change, but its area or volume remains
constant. When a decreases, i.e., when the time resolution decreases, the frequency
support of the wavelet is shifted to the higher frequencies, and vice versa, in
accordance with Heisenberg’s Uncertainty Principle, discussed in Chapter 6.

As Figure 7.6 shows, the higher scales a correspond to the most dilated
(“stretched”) wavelets. The more dilated the waveletψτ,a(t), the longer the portion
of the time series x(t) with which it is being compared, and thus the coarser the

�
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Figure 7.6 Heisenberg boxes of two wavelets. Smaller scales decrease the time disper-
sion, but increase the frequency support, which is shifted towards higher
frequencies.



Wavelet time–scale analysis of risk 199

Frequency

Time

Frequency

Time

(a) (b)

(c) (d)

Figure 7.7 Time–frequency resolution and basis functions of the Windowed FT and the
Wavelet Transform: (a) tiling of the time–frequency plane for the WFT, (b) for
the WT, (c) corresponding basis functions for the WFT and (d) for the WT.

time series features being measured by the wavelet resonance coefficientsW(τ, a).
Therefore, there is an inverse correspondence between the scale parameter a and
the radian frequency ω:

Low scale a⇔ compressed wavelet⇔ rapidly changing time series details ⇔
high frequency ω.
High scale a ⇔ dilated wavelet ⇔ slowly changing, coarser time series
features ⇔ low frequency ω.

Remark 260 Gábor’s Windowed or Short-Term Fourier Transform (STFT)
obtains frequency information with limited precision, and that precision is deter-
mined by the size of the window of the particular Gábor atom, which remains
the same for all frequencies. In contrast, the WT uses wavelet windows that vary
according to their scale (= “inverted frequency”). This can be clearly seen in
Figure 7.7, which compares the basis functions and time–frequency resolution of
Gábor’s WFT and the WT in tiling diagrams. The tiles in these diagrams represent
the essential concentration in the time–frequency plane of a given basis function
(Herley et al., 1993; Strang, 1993). Notice in (d) that the shape of the wavelet
basis functions is invariant under the changes in frequency. This is what produces
the precise and unambiguous interpretation of a time–frequency analysis by a WT.

7.2.3 Scalograms: varying scaled and localized densities

Thus, the wavelet coefficient W(τ, a) depends on the values of x(t) and its FT
F(ω) in the time–frequency region, where the risk of the wavelet atom ψτ,a and
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its FT �τ,a(ω) is concentrated. Measuring time-varying frequencies is again the
most important application of WTs. Sharp transitions in the time series x(t) create
large amplitude wavelet resonance coefficients W(τ, a) at scales a localized at
time τ . The time evolution of such spectral or scale components is analyzed by
following the location of such large amplitude coefficients. As we saw earlier,
these visualizations are called scalograms (Figures 7.4 and 7.5). They are already
used on an experimental basis in economics (Ariño and Vidakovic, 1995), and in
finance (Jensen, 1997).

Definition 261 A scalogram, or local wavelet spectrum, is the localized and
scaled wavelet density (= modulus squared of the WT)

PW(τ, a) = |W(τ, a)|2

=
∣∣∣∣
∫ ∞

−∞
x(t)ψ∗τ,a(t)dt

∣∣∣∣
2

(7.9)

Thus, a scalogram measures the localized risk of a financial time series x(t) in
the time–scale neighborhood of (τ, a) specified by the Heisenberg box of ψτ,a(t).
If η denotes the frequency center of the base wavelet, then the frequency of a
dilated wavelet is ξ = η/a.4

Definition 262 The normalized scalogram is

ξ

η
PW(τ, a) (7.10)

Example 263 Figure 7.8 displays the scalogram of a wavelet analysis of our
example of the Gábor Windowed Fourier Analysis in Chapters 5 and 6, using a
Morlet wavelet for 25 different scale levels:

ψτ,a(t) = e−t2/2ejωmt + e−ω2
m/2 (7.11)

for ωm = 6, where the term in ω2
m ensures admissibility (it is negligible for

ω > 5) and j = √−1 (adapted from Bendjoya and Slezak, 1993, p. 240).
Scale a and frequency ω are related by a = ωm/ω. Again, the abscissa mea-
sures time t and the ordinate the scale a. A grey coding is used with the
largest resonance coefficients in black and the smallest in white. Notice the
differences compared with the Gábor analysis. First, all three monochromatic
frequencies present in the signal x(t) with the same amplitude are detected
in the same fashion. The three detected coherent frequencies have the same
weight. Moreover, the discontinuities are detected by the two cones pointing
towards the locations of these singularities at the small scales. The width of these
cones contains information about the type of singularity, as will be discussed in
Chapter 8.
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Figure 7.8 A scalogram with modulus |W(τ, a)| using a Morlet (6) wavelet for 25 different
scales along the ordinate and time along the abscissa, with grey level coding. The
three detected coherent frequencies ω3 < ω1 < ω2 in the signal x(t) have the
same weight. Discontinuities are visible at all scales through the cones pointing
toward the location of their singularities at the smallest scale. The grey strip at
the smallest scale is a finite sampling effect.

Example 264 Figure 7.9 demonstrates that the normalized scalogram
(ξ/η)PW(τ, a) is also a device to visualize nonstationarity, in particular of
time-varying frequencies, or “chirps.” The time series of the one but last example
in Chapter 6 of T = 1,000 observations is analyzed in the following scalogram.
As we noted, the time series includes a linear chirp, whose frequency increases
linearly over time, a quadratic chirp, whose frequency decreases quadratically
over time, and two modulated Gaussian noise functions located at t = 512 and
t = 896. Compare this scalogram with the spectrogram in Chapter 6. Despite
the appearance to the contrary, the scalogram represents the data analysis more
truthfully than the spectrogram, since the scalogram visualizes also the relative
epistemic uncertainty of the computed frequencies, in particular, of the higher
frequencies, as required by the Heisenberg Principle and the Heisenberg boxes.

The reason for the varying relative epistemic (knowledge) uncertainty in scalo-
grams is perfectly clear from the dyadic time–scale tiling diagram in Figure 7.10,
which shows how a smooth sinusoidal function and an isolated singularity are rep-
resented in a scalogram. In contrast, the spectrograms in Chapter 6 represent
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Figure 7.9 Normalized scalogram (ξ/η)PW (τ, a) computed from the “chirped” time series
of Figure 6.8. Dark points indicate large amplitude wavelet coefficients.

illusory analytic precision, where there can’t be any, because it is tiled by
scale-invariant, equally sized Heisenberg boxes.

Example 265 Figure 7.11 provides an empirical example of a 3D normalized
scalogram measuring a sharp discontinuity or break in a financial time series.
This scalogram is computed from 44,640 minute-by-minute increments of the Thai
baht quotations of July 1997. The large discontinuity at the beginning of the time
axis (from front towards the right) is caused by the financial crisis of July 2,
1997 and is represented by very large wavelet resonance coefficients (measured
along the vertical axis from 0 to 100 percent) over the various scales a along the
scale axis (from the front, where a = 1 minute, towards the left, where a = 60
minutes = 1 hour). Notice that most of the risk of the discontinuity is concentrated
on the smallest scale = highest frequency of Foreign Exchange (FX) trading: the
discontinuity generated a short-lived vortex.

Related to the scalogram is the scalegram or wavelet spectrum, which is the
wavelet analog of the average risk spectrum.

Definition 266 A scalegram, or global (average) wavelet spectrum is the scaled
wavelet density (= average modulus squared of the WT):

PW(a) =
∫ ∞

−∞
|W(τ, a)|2dτ

=
∫ ∞

−∞

∣∣∣∣
∫ ∞

−∞
x(t)ψ∗τ,a(t)dt

∣∣∣∣
2

dτ (7.12)

The wavelet spectrum is the scalogram projected (integrated) onto the scale
or (inverted) frequency axis. It provides the wavelet equivalent of the classical
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Figure 7.10 Time–scale tiling for a sinusoidal function with an isolated singularity
represented by a “cone” in the scaleogram at t0. The abscissa represents
time. The ordinate represents either increasing frequency or decreasing
scale (1/a).

marginal frequency distribution (cf. Chapter 2) and Fourier risk spectrum (cf.
Chapters 5 and 6).5 Like the average risk spectrum, it is used to look at the compo-
nents of a signal as a function of scale (or frequency), with disregard to location.
The wavelet spectrum based on the WT contains much the same information as the
risk spectrum based on the FT. The wavelet spectrum can be used to identify the
homogeneous H -exponent(s) from scaling financial time series, as we will see
in the next chapter. This, in turn, is used to identify special models of nonlinear
deterministic behavior called transient chaos or intermittency (Scargle, 1997).

Remark 267 When the noise model is based on counting photons, as in
Chapter 1, this noise simply adds a constant (independent of scale) to the true
average wavelet spectrum. That constant is the mean counting rate of the photon
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Figure 7.11 Empirical 3D scalogram of Thai baht increments in July 1997.

count. In practice, it is quite easy to identify the true scalegram, although the
identification remains uncertain when the signal-to-noise ratio is low.

7.2.4 Frame theory and wavelet bases

Subsampling of Gábor’s WFT, or of the CWT, defines a complete representation
of the financial time series, if any such time series can be reconstructed from
linear combinations of discrete families of windowed Fourier atoms {gτn,ξk }(n,k)∈Z2 ,
or, respectively, of wavelet atoms {ψτn,aj (n,j)∈Z2}. Frame theory discusses what
conditions the families of wavelets must satisfy if they are to provide stable and
complete representations of time series. Completely eliminating redundancy is
equivalent to building an orthogonal basis of the time series space. The following
discussion is meant to generalize for WTs what we already have learned from
the FTs.

Definition 268 A frame is a family of vectors φk(t), which can represent any
financial time series with finite risk by the sequence of its inner products with the
vectors of the family. More precisely, a family {φk(t)}k∈Z of vectors in the real
square-integrable, or Hilbert space L2(R), is a frame of this L2 space, if there are
two constants A > 0 and B > 0 such that, for any x(t) in the space L2(R),

A‖x(t)‖2 ≤
∑
k∈Z

|〈x(t), φk(t)〉|2 ≤ B‖x(t)‖2 (7.13)
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where

‖x(t)‖2 =
∫ +∞

−∞
|x(t)|2dt (7.14)

is the risk content of x(t), aka the norm of financial time series x(t).

Definition 269 If A = B, the frame is said to be tight.

In general a frame is a stable, redundant and not necessarily linear representation
of a financial time series. It is a generalization of the more familiar fundamental
concept of the basis of a linear space, which we’ve encountered earlier. For exam-
ple, an orthogonal basis is a complete, tight frame. The frame vectors {φk(t)}k∈Z

are supposed to be of unit norm, that is

‖φk(t)‖2 =
∫ +∞

−∞
|φk(t)|2dt = 1 (7.15)

When is a frame not tight but redundant (Lawton, 1990)?

Definition 270 A frame is redundant, if 1 < A.

There exist some specific bases for the wavelet decomposition space. For
example,

Definition 271 A Riesz basis is a frame of linearly independent vectors
{φk(t)}k∈Z.

If the frame vectors {φk(t)}k∈Z form a Riesz basis, then A ≤ 1 ≤ B.

Definition 272 An orthonormal basis is a tight (= complete = unique) Riesz
basis.

Thus, a frame is an orthonormal basis if and only if A = B = 1.
A financial time series x(t) can always be expanded into a series of terms, as

follows.

Definition 273 An expansion is the linear decomposition

x(t) =
+∞∑
k=−∞

akφk(t) (7.16)

where k is an integer index for the finite or infinite sum, ak are the real-valued
expansion coefficients, and φk(t) are a set of real-valued functions of t , called the
expansion set.
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We can always expand, decompose or analyze a financial time series into a series
of terms, but the question is: when is such an analytic decomposition complete
and thus unique? That depends on the set of terms {φk(t)}. If this set is complete
and thus unique, the expansion is.

Definition 274 If an expansion (= linear decomposition) is unique, the set of
frame vectors {φk(t)} is called a basis for the class of financial time series x(t)
that can be so decomposed.

Remark 275 For example, the set of exponential eigenvectors {ejωt } form the
expansion set for the FT. Since it is a unique expansion, this particular expansion
set forms a basis.

One of the crucial consequences of dealing with an orthogonal basis is that
the expansion coefficients ak can always be computed by the inner product (or
correlation):

ak = 〈x(t), φk(t)〉

=
∫ +∞

−∞
x(t)φk(t)dt (7.17)

As we discussed in Chapter 5, this was, indeed, the case with the computation of
the FT resonance coefficients, and, we will see, it is also the case with a properly
defined wavelet basis! We need also to define the extend or span of the basis set
and what is maximally included in such a span.

Definition 276 The span of a basis set, span {φk(t)}, is the set of all financial
time series x(t) that can be decomposed in terms of this set of bases:

x(t) =
+∞∑
k=−∞

akφk(t) (7.18)

Definition 277 The closure of the space spanned by the basis set, span{φk(t)},
contains not only all variables that can be expressed by a linear combination of
the basis functions φk(t), but also the variables which are the limit of these infinite
expansions.

The closure is usually denoted by an over-bar, as we will see in Definition 291,
when we discuss wavelet MRA, which is a particular form of unique expansion.
To do so, we need the definition of a wavelet expansion.
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Definition 278 A wavelet expansion is the two-parameter (or 2D) expansion,
such that

x(t) =
+∞∑
j=0

+∞∑
n=−∞

aj,nψj,n(t) (7.19)

where the integer indices j, n ∈ Z
2 and the ψj,n(t) are the wavelet expansion

functions that (usually) form an orthogonal basis.

Similar to the preceding general frame definitions, we have for the wavelet bases
the following specific definitions.

Definition 279 An orthogonal wavelet basis is a complete set of orthogonal
wavelets:

{ψj,n}(j,n)∈Z2 (7.20)

Definition 280 An orthonormal wavelet basis (or tight wavelet frame) is a
complete set of orthonormal wavelets.

The term complete in these articular definitions means that there are no redundant
wavelets in these set and that the set is unique.

Definition 281 The set of expansion coefficients aj,n are called the Discrete
Wavelet Transform (DWT) of x(t) and the wavelet expansion is the inverse DWT.

The following is a most remarkable and powerful theorem. It is clearly the
foundation for the success and current popularity of wavelet MRA. For its proof
we refer to the aforementioned mathematical wavelet literature, in particular to
Mallat (1989a).

Theorem 282 (Wavelet expansion) Any financial time series x(t) with finite risk
can be decomposed over a orthogonal wavelet basis

x(t) =
+∞∑
j=0

+∞∑
n=−∞

〈x(t), ψj,n〉ψj,n (7.21)

This theorem is remarkable and powerful, because it states that any financial
time series can be so completely analyzed. There is no approximation involved!

In summary:

(1) A wavelet basis is a set of building blocks to represent a function or time series
x(t). It is a 2D expansion set (usually a basis) for some class of 1- (or higher)
dimensional functions.

(2) The wavelet expansion gives a time–scale (frequency) localization of x(t).
Most of the risk of the financial time series x(t) is well represented by a few
expansion coefficients aj,n.

(3) The computation of these expansion coefficients from x(t) can be done
efficiently in discrete time.
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7.2.5 DWT Systems

We will now present some specific examples of first-generation wavelet sets of
DWTs, which are all generated from a single scaling function, or a wavelet, by
simple time translation and frequency scaling.

Almost all useful wavelet sets also satisfy the so-called multiresolution condi-
tions. This means that if a set of data series can be represented by a weighted sum
of laterally shifted wavelets ψ(t − k), then a larger set (including the original) can
be represented by the weighted sum of ψ(2t − k). The lower resolution coeffi-
cients can be computed from the higher resolution coefficients by a tree-structure
algorithm, called a filter bank. Mallat (1989a) provided the mathematical basis for
such an MRA, as we will discuss in detail in Section 7.3.

We will now first define some families of wavelets, which can be quite diverse.

7.2.5.1 Haar wavelet

The first recorded mention of the term “wavelet” was in 1909, in the PhD thesis of
Alfréd Haar (1910).6 Haar realized that one can construct a very simple piecewise
constant function whose dilations and translations generate a complete dyadic
orthonormal basis in Hilbert space, i.e., in real quadratic linear space L2(R), as
follows.7

Definition 283 A dyadic orthonormal wavelet basis in Hilbert space L2(R) is
defined by the set of dyadically scaling orthonormal wavelets:

ψj,n(t) = 1√
2j
ψ

(
t − 2j n

2j

)

= 2−j/2ψ(2−j t − n) (7.22)

The discrete dyadic scale parameter aj = 2j , while the translation interval is
τn = 2j n. The factor 2−j/2 maintains a constant norm independent of scale j .
Thus, we have the definition of the Haar wavelet.

Definition 284 The discrete Haar wavelet is defined by:

ψH(t) =



+1 if 0 ≤ t < 0.5

−1 if 0.5 ≤ t < 1

0 otherwise

(7.23)

The Haar wavelet is the (basic) wavelet that appears most useful for the anal-
ysis of financial time series, in particular of the increments or rates of return of
pricing series, since they are produced by independently shifting demand and
supply (curves), often in the form of discretely recorded tick data from trading
transactions, and contain many singularities.
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7.2.5.2 Other families of wavelets

Of course, there exists a whole family of considerably more sophisticated wavelets
other than the simple Haar wavelet. For example, other rather simple wavelets are
the discrete time triangle wavelet and the continuous time Gábor wavelet.

Definition 285 The discrete Triangle Wavelet is

ψT (t) =



+t if 0 ≤ t < 0.25

0.5− t if 0.25 ≤ t < 0.75

−1.0+ t if 0.75 ≤ t < 1

0 otherwise

(7.24)

Definition 286 The continuous Gábor wavelet is a particular Gábor chirp (cf.
Chapter 6)

ψG(t) = ejηtg(t) (7.25)

with a Gaussian window

g(t) = 1

σ 2π0.25
e−t2/2σ 2

(7.26)

for σ 2η2 � 1.

The Gábor wavelet wavelet family, which has a Gaussian flavor, is often used in
theoretical continuous time MRA, where it provides elegant solutions for difficult
problems, as we will see in Chapter 8.

The family of wavelets is growing rapidly, since customized sets of wavelets
can be carefully created to satisfy selected situations by applying particular zero-
moment conditions, as Daubechies (1988) first demonstrated. There now exists
already a remarkable Daubechies(N) wavelet family, where N = order of zero-
moments of the Daubechies wavelets. But there are no explicit closed form
Daubechies wavelets, except the Daubechies(1) wavelet, which is the same as
the Haar wavelet. The N > 1 order Daubechies wavelets are all defined numer-
ically by sets of recursive equations which define the filter coefficients of these
wavelets. This is a similar situation as the no-closed form of most stable frequency
distributions in Chapter 3.

7.3 Mallat’s MRA

An efficient way to implement the DWT in the form of an MRA was invented
in 1986 and developed in 1988 by Mallat (1989a–c). The operational Mallat
algorithm is in fact a classical scheme known to signal processing engineers
as a two-channel subband coder, or tree analysis. This very practical filter-
ing algorithm yields a Fast Wavelet Transform, similar to the Fast Fourier
Transform (FFT).
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For many financial time series, the low-frequency content of a time series x(t) is
the most important part, since it gives the series its recognizable identity. Its high-
frequency content, on the other hand, imparts its flavor or nuance. Mallat showed
that one can completely decompose a time series x(t) in terms of approximations
(A), provided by so-called scaling functions, and details (D), provided by the
wavelets. The approximations are the high-scale, low-frequency components of
the time series. The details are the low-scale, high-frequency components.

This decomposition process can be iterated, with successive approximations
being decomposed in turn, so that one time series x(t) is broken down in many
lower-resolution components. This is called the wavelet decomposition tree. Since
the decomposition process is iterative, in theory it can be continued indefinitely.
In reality, the decomposition can proceed only until the individual details consist
of a single observation. For example, when one observes minute-by-minute data,
the one-minute data point provides the smallest detail of resolution. The choice
of the wavelet filters determines the shape of the wavelet we use to perform the
analysis.

The following discussion of Mallat’s MRA is adapted from Burrus et al. (1998)
and from Hubbard (1998).

7.3.1 Low- and high-pass filters

Mathematically, for the MRA of the financial time series x(t), one needs two
closely related basic functions. In addition to the wavelet ψ(t), which provides
the details, one needs a second basis function, called the scaling function, which
provides the low frequency approximation, e.g., like an average or mean. This
scaling function and the wavelets are conjugated, as we will see. One cannot exist
without the other. Mallat (1989a) proves that, using a combination of these scaling
functions and wavelets, a very large class of time series can be represented by the
following decomposition equation of scaling functions and wavelets:

x(t) = A+D

=
+∞∑
n=−∞

cnϕn(t)+
+∞∑
j=0

+∞∑
n=−∞

dj,nψj,n(t) (7.27)

where the approximation (A) is provided by the 1D linear combination of the
scaling functions, which form the so-called low-pass filters:

A =
+∞∑
n=−∞

cnϕn(t)

=
+∞∑
n=−∞

cnϕ(t − n) (7.28)
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Figure 7.12 Time signal observations on f (x) in panel (a) are subject to low-pass
filtering in panel (b) and subject to high-pass filtering in panel (c).

and the details (D) by the 2D linear combination of the dyadic wavelets, which
form the so-called high-pass filters:

D =
+∞∑
j=0

+∞∑
n=−∞

dj,nψj,n(t)

=
+∞∑
j=0

+∞∑
n=−∞

dj,nψ(2
−j t − n) (7.29)

Example 287 Figure 7.12 shows a primitive form of MRA or decomposition:
1D time series fK(x) (a) subject to low-pass filtering, (b) as indicated by the <
sign, and high-pass filtering, (c) as indicated by the > sign. This kind of analysis
is discussed in finance by, for example, Fama and French (1988). Obviously,

fK(x) = f <K (x)+ f >K (x) (7.30)

where 1/K is the scale of this filtering. This is a time series which possesses
structures on only two very different scales: a small scale (of the order of a few
millimeters) and a large scale (of the order of a few centimeters). The filter scale
1/K is chosen to be intermediate, say, c.1 cm. The passage from f <K (x) to f >K (x)
may be generalized to filters of arbitrary shape, such as the WTs.

The coefficients of this MRA expansion, or DWT, are again computed as inner
products, or basis correlations, as follows.
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Definition 288 The discrete (approximation) scaling coefficients are computed
by the inner product

cn = 〈x(t)φn(t)〉

=
∫ +∞

−∞
x(t)φn(t)dt, with n ∈ Z (7.31)

Definition 289 The discrete (detail) wavelet resonance coefficients are computed
by the inner product

dj,n = 〈x(t)ψj,n(t)〉

=
∫ +∞

−∞
x(t)ψj,n(t)dt, with j, n ∈ Z (7.32)

Let’s look now at some more clarifying definitions and see why this decompo-
sition into approximating scaling functions φn(t) and detailing wavelets ψj,n(t)
leads to a complete MRA of the time series x(t), due to the conjugation between
these two functions.

Definition 290 A set of (time) scaling functions is defined in terms of integer
translates of the real square integrable basic scaling function by

ϕ(t) = ϕ(t − n), n ∈ Z, ϕ ∈ L2(R) (7.33)

Thus, a scaling function is a strictly periodic function, as defined in Chapter 3.
It exactly repeats itself with a lag n. Therefore, most of the concepts of the periodic
wave theory of FTs can be applied to scaling functions.

Definition 291 The square-integrable real (Hilbert) subspace ofL2(R) spanned
by these scaling functions is defined as

V0 = span{ϕn(t)} (7.34)

for all integers k from−∞ to+∞. The over-bar denotes closure. This means that

x(t) =
+∞∑
n=−∞

anϕn(t) for any x(t) ∈ V0 (7.35)

One can increase the size of the subspace spanned by changing the time scale
of the time scaling functions. A 2D set of functions is generated from the basic
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scaling function by translation and scaling, as follows

ϕj,n(t) = 2−j/2ϕ(2−j t − n) (7.36)

whose span over n is

Vj = spann{ϕn(2−j t)}
= spann{ϕj,n(t)} for all integers n ∈ Z (7.37)

This means that any time series x(t) can be linearly expanded strictly in terms
of scaling functions as follows:

x(t) =
+∞∑
n=−∞

anϕj,n(t)

=
+∞∑
n=−∞

anϕn(2
−j t − n) for any x(t) ∈ Vj (7.38)

For j < 0, the span can be larger, since the ϕj,n(t) is narrower and is translated
in smaller steps. Therefore, it can represent finer detail. For j > 0, ϕj,n(t) is wider
and is translated in wider steps. The wider scaling functions can represent only
coarse information, and the space they span is smaller. Thus, the change in scale
provides a change in resolution. The scale j indicates the resolving power of the
analysis, similar to the resolving power of lenses in optics and photography.

7.3.2 MRA equation

Mallat formulated these intuitive ideas of scale and resolution into mathematical
requirements for a complete MRA, by requiring a nesting of the spanned spaces
Vj as follows

Vj+1 ⊂ Vj for all j ∈ Z (7.39)

with

V∞ = {0} and V−∞ = L2(R) (7.40)

Thus, the linear space that contains low resolution will also contain the linear
spaces of high resolution. This means that at the zero resolution, the only finite
risk time series is 0, while at the infinite resolution all finite risk time series are
perfectly reproduced. In other words, because of the definition of the spanned
spaces Vj , the spaces must satisfy the natural dyadic scaling condition

ϕ(t) ∈ Vj ⇔ ϕ(2t) ∈ Vj+1 (7.41)

which ensures that elements in a space are simply scaled versions of the elements
in the next space. Thus, Vj+1 is obtained from Vj by factor 2 rescaling.
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This dyadic nesting of the spans of ϕ(2−j t − n), denoted by Vj , is achieved
by requiring that ϕ(t) ∈ V1, which means that if ϕ(t) ∈ V0, it is also ϕ(t) ∈ V1,
the space spanned by ϕ(2t). The resolution of Vj is generated by a basis which
is obtained by 2−j translations of a 2=j rescaled ϕ. The ϕ is such a function that
integer translations or lateral time shifts of ϕ creates a Riesz basis of V∞. As we
discussed earlier, a Riesz basis is a frame of linearly independent vectors.

Thus, we have now arrived at Mallat’s formal definition of an MRA.

Definition 292 (Mallat’s MRA) A sequence {Vj }j∈Z of closed subspaces of
L2(R) is an MRA, if and only if the following six properties are satisfied:

(1) For all (j, n) ∈ Z
2, x(t) ∈ Vj ⇔ x(2−j t − n) ∈ Vj+1 (Vj is 2−j dyadic

translation invariant)
(2) For all j ∈ Z, Vj+1 ⊂ Vj (nesting of resolutions)
(3) For all j ∈ Z, x(t) ∈ Vj ⇔ x(2−1t) ∈ Vj+1 (dyadic scaling of resolutions)
(4) limj→∞ Vj = ∩+∞j=−∞Vj = {0} (at zero resolution, finite risk is 0)

(5) limj→−∞ Vj = Closure(∪+∞j=−∞Vj ) = L2(R) (at infinite resolution, perfect
reproduction of finite risk)

(6) There exist a function ϕ, such that {ϕ(t − n)}n∈Z is a Riesz basis of V0.

Remark 293 When the Riesz basis is an orthogonal basis, the MRA is orthog-
onal, and its base atom is called a scaling function. It is always possible to
orthogonalize any MRA. This implies that scaling functions always exist. However,
orthogonalities impose constraints, such as that a compactly supported orthogo-
nal scaling function cannot be symmetric and continuous, as Daubechies (1988,
1992) proved.

The definition of an MRA implies that the scaling functionϕ(t) can be expressed
in terms of an expansion, i.e., a weighted sum of shifted ϕ(2t) as follows
(Strang, 1989).

Definition 294 The MRA (dilation or scaling) equation is

ϕ(t) =
+∞∑
n=−∞

h(n)
√

2ϕ(2t − n), for any n ∈ Z (7.42)

where the coefficients h(n) are real or complex numbers called the scaling (func-
tion) coefficients (= the scaling filter or scaling vector) and the scaling factor
1/
√

2 maintains the norm of the scaling function.

An equivalent way to present the MRA equation is

1√
2
ϕ

(
t

2

)
=

+∞∑
n=−∞

h(n)ϕ(t − n), for any n ∈ Z (7.43)
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Its FT is

�(ω) = 1√
2

H
(ω

2

)
�
(ω

2

)
(7.44)

where H(ω) is the transfer function, i.e., the FT of h(n).
This recursive equation is fundamental to MRA and is analogous to a differential

equation with coefficients h(n) and a closed form solution ϕ(t), that may or may
not exist, or be unique or nonunique. For example, only for the Daubechies(1)
wavelet (= Haar wavelet) exists an explicit expression, which is the Haar scaling
function. For all higher order Daubechies wavelets only numerical solutions exist
in the form of computed h(n) coefficients, although the square modulus of the
transfer function, |H(ω)|2, is explicit and often fairly simple.

The coefficients h(n) form a so-called conjugate mirror filter, which entirely
determines the scaling function and most of its properties. In particular, the scaling
function is compactly supported, if and only if h(n) has a finite number of zero
coefficients. In fact, we have the following crucial MRA design Theorem of Mallat
and Meyer, which we present again without its proof, since it can be found in Mallat
(1989a–c).

Theorem 295 (Mallat and Meyer MRA design) Let ϕ ∈ L2(R) be any inte-
grable scaling function. The Fourier series of the MRA coefficients h(n), which
are computed by the inner product

h(n) =
〈

1√
2
ϕ

(
t

2

)
, ϕ(t − n)

〉
(7.45)

satisfies the two dyadic equations

for all ω ∈ R, |H(ω)|2 + |H(ω + π)|2 = 2 (7.46)

and

H(0) = √2 (7.47)

Conversely, if H(ω) is 2π periodic and continuously differentiable in a neighbor-
hood of ω = 0, if it satisfies the two dyadic equations, and if

min
ω∈[− π

2 ,
π

2 ]
|H(ω)| > 0 (7.48)

then

�(ω) =
+∞∏
p=1

H(2−pω)√
2

(7.49)

is the FT of a scaling function ϕ ∈ L2(R).
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Remark 296 This important FT of the scaling function is currently used for
designs of new MRAs, which show up in the image compression filters, like the
JPEG and MPEG filters of digital cameras and in the storage of digital movies on
the Internet, and which are used for the digital restoration and coloration of old
classic black and white movies in Hollywood (Mulcahy, 1996, 1997).

7.3.2.1 Examples of MRA scaling filters

The following are examples of the scaling function and the corresponding MRA
equation for some of the wavelet families we’ve introduced earlier in this chapter:

(1) The Haar (= Daubechies(1)) scaling function is

ϕ(t) =
{

1 if 0 ≤ t < 1

0 otherwise
(7.50)

and its corresponding Haar MRA equation is

ϕ(t) = ϕ(2t)+ ϕ(2t − 1) (7.51)

i.e., the MRA equation with two scaling coefficients

h(0) = h(1)

= 1√
2
= 0.70711 (7.52)

(rounded to five digits).

Figure 7.13 (left) shows how the Haar MRA equation corresponds with the
graph of its scaling function.

�(t ) = �(2t ) + �(2t –1) �(t ) = �(2t ) + �(2t –1) + �(2t – 2)1
2

1
2

Figure 7.13 Haar (left) and triangle (right) scaling functions and their respective MRA
equations.
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(2) The triangle scaling function is

ϕ(t) =



t if 0 ≤ t < 0.5

1− t if 0.5 ≤ t < 1

0 otherwise

(7.53)

and the corresponding triangle MRA equation is

ϕ(t) = 1

2
ϕ(2t)+ ϕ(2t − 1)+ 1

2
ϕ(2t − 2) (7.54)

i.e., the MRA equation is with three scaling coefficients

h(0) = 1

2
√

2
= 0.35355 (7.55)

and

h(1) = h(2)

= 1√
2
= 0.70711 (7.56)

Figure 7.13 (right) shows how the triangle MRA equation corresponds with the
graph of its scaling function.

(3) The Daubechies(4) scaling function is the MRA equation with four scaling
function coefficients

h(0) = 0.48296 (7.57)

h(1) = 0.83652 (7.58)

h(2) = 0.22414 (7.59)

and

h(3) = −0.12941. (7.60)

These scaling function coefficients are crucial for the “regularity” or
“zero-moment” properties of the scaling filter. They summarize the density of
information in the time series x(t).

7.3.3 Relationship between wavelets and scaling functions

But what is the general relationship between wavelets and scaling functions? The
wavelets are used to build a basis on which to represent the details of a time series
that are gained between a particular resolution represented by a scaling function,
and the next finer resolution, as is seen from the following set of definitions.
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Definition 297 Sets of wavelets {ψj,n(t)} are sets of functions that span the
differences between the spaces spanned by the various scales of a scaling function.

Remark 298 Usually it is required that the scaling functions and their corre-
sponding wavelets are orthogonal, because orthogonal functions allow simple
computation of expansion coefficients by inner (correlation) products and, con-
sequently, as we will see at the end of this chapter, have a Parseval’s Theorem
that allows the complete partitioning of the financial time series’ risk in the WT’s
time–scale domain.

Definition 299 The orthogonal complement (or disjoint difference) of Vj in
Vj+1 is Wj . This means that all elements of Vj are orthogonal to all elements of
Wj , or the inner products of all scaling functions and wavelets equal zero

〈ϕj,n(t)ψj,l(t)〉 =
∫ ∞

−∞
ϕj,n(t)ψj,l(t)dt = 0 (7.61)

for all appropriate j, l, n ∈ Z.

This relationship between the orthogonal spaces is indicated as follows

Vj+1 = Vj ⊕Wj (7.62)

where the symbol⊕ indicates that the space Vj+1 consist of the subspace Vj and
its orthogonal complement W0. But then

V2 = V1 ⊕W1

= V0 ⊕W0 ⊕W1 (7.63)

and, in general, the whole real square-integrable (Hilbert) space is completely
divided up as follows

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · · (7.64)

where V0 is the initial space spanned by the scaling function ϕ(t − n).
The scale of the initial space V0 is arbitrary and can be chosen at any available

resolution. Thus also

W−∞ ⊕ · · · ⊕W−1 = V0 (7.65)

which again shows the arbitrariness of the scale of the scaling space. In practice,
the scale of the scaling space is chosen to represent the coarsest detail, or largest
observation window, of interest in the time series x(t). This will become clearer
when we exhibit some of the empirical MRA examples.

The MRA equation for scaling functions is complemented by the MRA equation
for wavelets.
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Definition 300 The MRA equation for wavelets is the weighted sum of shifted
scaling functions

ψ(t) =
+∞∑
n=−∞

h1(n)
√

2φ(2t − n), n ∈ Z (7.66)

for some set of wavelet (generation) coefficients h1(n), since the wavelets reside
in the space spanned by the next narrower scaling function, W0 ⊂ V1.

This MRA equation for wavelets can equivalently be presented as

1√
2
ψ

(
t

2

)
=

+∞∑
n=−∞

h1(n)φ(t − n), n ∈ Z (7.67)

Its FT is

�(ω) = 1√
2

H1

(ω
2

)
�
(ω

2

)
(7.68)

It can be easily proved, that, because of the MRA requirements and because of
the orthogonality of the translates of the scaling function, these wavelet generation
coefficients h1(n) (modulo translates by integer multiples of two) are required by
orthogonality to be related to the scaling function coefficients by the following
equation

h1(n) = (−1)nh(1− n) (7.69)

The MRA equation for the wavelet ψ(t) gives the prototype or mother wavelet for
a class of expansion functions of the form

ψj,n(t) = 2j/2ψ(2j t − n) (7.70)

7.3.3.1 Examples of MRA wavelet filters

The following are again examples of the wavelet resonance coefficients h1(n)

that satisfy the wavelet coefficient equation, and show how easy it is to generate
wavelets from sets of particular scaling functions:

(1) For the Haar wavelet, the MRA equation for wavelets is

ψ(t) = φ(2t)− φ(2t − 1) (7.71)

and the two wavelet generation coefficients are

h1(0) = −h1(1)

= 1√
2
= 0.70711 (7.72)
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	(t ) = �(2t ) – �(2t –1) 	(t ) = – �(2t ) – �(2t –2) + �(2t – 1)1
2

1
2

Figure 7.14 Haar (left) and triangle (right) wavelets and their respective MRA
equations.

Figure 7.14 (left) shows how the Haar MRA equation for wavelets corresponds
with the graph of its wavelet.

(2) For the triangle wavelet, the MRA equation for wavelets is

ψ(t) = −1

2
φ(2t)+ φ(2t − 1)− 1

2
φ(2t − 2) (7.73)

and the three wavelet generation coefficients are

h1(0) = − 1√
2
= −0.70711 (7.74)

h1(1) = −0.35355 (7.75)

and

h1(2) = 0.35355 (7.76)

Figure 7.14 (right) shows how the triangle MRA equation for wavelets
corresponds with the graph of its wavelet.

(3) For the Daubechies (4) wavelet (cf. Figure 7.2), the four wavelet generation
coefficients are

h1(0) = 0.12941 (7.77)

h1(1) = 0.22414 (7.78)

h1(2) = −0.83651 (7.79)

and

h1(3) = 0.48296 (7.80)

The wavelet resonance coefficients summarize the detailed transient information
in time series x(t).
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7.3.4 Design properties of MRA systems

Nowadays the optimal design of MRA systems consists of the choosing of the
scaling coefficients h(n) according to particular signal processing design criteria
to improve the resolution of a single time series x(t), or of a 2D time series, c.q.,
digital pictures and movies, like the JPEG and MPEG criteria (Donoho, 1993a,b;
Strichartz, 1993; Daubechies, 1996).8 Let’s have a look at some of the specific
MRA design properties, such as the order of the vanishing moments, support,
regularity and symmetry of the wavelet and scaling functions.9

7.3.4.1 Vanishing moments

Criterion 301 A wavelet ψ(t) has p vanishing moments∫ +∞

−∞
tkψ(t)dt = 0 for 0 ≤ k < p (7.81)

if and only if its scaling function can generate polynomials of degree smaller than
or equal to p.10

When the wavelet’s p moments are equal to zero, all the polynomial time series

x(t) =
∑

0≤k<p
akt

k (7.82)

have zero wavelet resonance coefficients and their details are also zero. This
property ensures the suppression of time series that are polynomials, since the
systematic polynomials are exactly captured by the scaling functions, just like
cosine and sine waves are exactly captured by Fourier series.

Remark 302 While this property of vanishing moments is described by the
approximating power of scaling functions, for wavelets it has also the possibility
to characterize the order of isolated singularities. The order of vanishing moments
of a wavelet is entirely determined by the coefficients h(n) of the filter h featured
in the scaling function.

If the FT of the wavelet is p times continuously differentiable, then the three
following conditions are exactly equivalent:

(1) The wavelet ψ has p vanishing moments.
(2) The scaling function ϕ can generate polynomials if degree smaller than or

equal to p.
(3) The FT of the filter h and its first p − 1 first derivatives vanish at ω = π .

All these conditions can rather easily be checked.

Remark 303 Daubechies (1988) proved that, to generate an orthogonal wavelet
with p vanishing moments, a filter of minimum length 2p has to be used.
Daubechies filters, which generate Daubechies wavelets, have a length of 2p.
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7.3.4.2 Compact support

The following property of compact support has to do with the speed of conver-
gence to zero at infinity of the scaling and wavelet functions, when either time or
frequency goes to infinity.

Criterion 304 If the support of the scaling function is [N1, N2], then the wavelet
support is [(N1−N2−1)/2, (N2−N1+1)/2]. The scaling function is compactly
supported if and only if the filter h has finite support, and the support boundaries
of h are not the same N1 �= N2, i.e., the support is asymmetric.

Remark 305 Daubechies (1988, 1992) also showed that it is possible for the
scaling function and the wavelets to have both compact support (i.e., to be nonzero
only over a finite region) and to be orthonormal. This made possible the desired
exhaustive and complete time–scale analysis. Thus, all risk of a financial time
series can be completely presented by a dyadic tiling of its whole time–scale
domain.

7.3.4.3 Irregularity

We have discussed irregularity of time series somewhat in Chapter 4, and we will
discuss it in more detail in Chapter 8. Wavelet regularity is less important than their
vanishing moments. Wavelets can be very irregular. Consequently, the following
two wavelet properties are crucial:

Criterion 306 There is no compactly supported orthogonal wavelet which is
indefinitely differentiable.

Criterion 307 For Daubechies wavelets with a large number of vanishing
moments p, the scaling function and wavelet are α-Lipschitz, where α is of the
order of 0.2p. For large classes of orthogonal wavelets, more regularity implies
more vanishing moments.11

To represent x(t) with K derivatives, one can choose a wavelet ψ(t) that is
K (or more) times continuously differentiable. The penalty for imposing greater
smoothness in this sense is that the supports of the basis functions, the filter lengths
and, hence, the computational complexity all increase. The most remarkable prop-
erty is that smooth bases are also the “best” bases for representing time series with
arbitrarily many singularities. This is a property that may become essential for the
ongoing research of singularity spectra, as discussed in Chapter 8 (Donoho, 1993a).

7.3.4.4 Symmetry

Symmetric scaling functions and wavelets are important, because they are used
to build bases of regular wavelets over any interval, rather than over only the
real axis. Daubechies (1988, 1993) proved that, for a wavelet to be symmetric
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or anti-symmetric, its filter must have a linear complex phase and the following
property.

Criterion 308 There is no symmetric compactly supported orthogonal wavelet
other than the Haar wavelet, which corresponds to a discontinuous wavelet with
one vanishing moment. Thus, all compactly supported orthogonal wavelets other
than the Haar wavelet are asymmetric.

7.3.5 Usefulness of wavelets

Burrus et al. (1998, p. 216) summarize why wavelets are so useful for (financial)
time series analysis:

(1) Wavelets, even very irregular ones, can represent smooth time series, in partic-
ular, those series which exhibit some form of scaling behavior, since wavelets
themselves are self-similar.

(2) Wavelets can also represent series of singularities of various kinds.
(3) Wavelets are local. This makes most coefficient-based algorithms naturally

adaptive to the heterogeneities in the time series.
(4) Wavelets have the unconditional basis property for a great variety of time

series, implying that if one knows very little about a time series, as is often the
case in the financial markets, the wavelet basis is usually a reasonable choice
for measurement and analysis.

7.4 Wavelet Parseval Risk Decomposition Theorem

If the scaling functions and wavelets form an orthonormal basis (= a tight frame),
there is a Parseval’s (tiling) Theorem that relates the risk of the financial time series
x(t) exactly to the risk in each of the components and their wavelet resonance
coefficients (Herley et al., 1993).

Theorem 309 (Parseval’s tiling) For the general wavelet expansion the risk or
variance of the financial time series can be expanded (or analyzed) as

∫ +∞

−∞
|x(t)|2dt =

+∞∑
n=−∞

|cn|2 +
+∞∑
j=0

+∞∑
n=−∞

|dj,n|2 (7.83)

with the risk in the expansion completely partitioned in time by n and in scale by j .

Parseval’s Theorem for wavelets allows us to completely and uniquely decom-
pose the overall risk of a financial market time series into subcomponent, i.e., into
financial risk at any scale (frequency) and at any moment in time. Thus, we have
achieved one of the major objectives of this book: to find a rigorous method to
decompose the risk of a financial rate of return series into any time-localized scale
or frequency of our choice.
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Using Parseval’s tiling one can check if volatility scales in foreign exchange mar-
kets, as Batten and Ellis (1999) claim, or if the volatility of credit spreads scales, as
Batten et al. (1999) claim. In Chapter 8, we’ll discuss how to use the wavelet MRA
to identify the homogeneous Hurst exponent of the parametric scaling of the FBM.

7.5 Software

The computations of the following Exercises can be executed by using the
MATLAB® Wavelet Toolbox, available from The MathWorks, Inc., 24 Prime Park
Way Natick, MA 01760-1500, USA. Tel.: (508) 647-7000; Fax: (508) 647-7001;
http://www.mathworks.com/products/wavelettbx.shtml.

A complete wavelet analysis toolkit called Wavelab 802 can be obtained at no
cost from Stanford University: http://playfair.stanford.EDU:80/˜wavelab/.

This Wavelab is a very complete set of MATLAB® scripts that implement both
the basic wavelet and related transforms and more advanced techniques. There is
full documentation, a set of tutorials, and section of “Toons,” short for cartoons.
These Toon scripts reproduce from scratch the figures in many papers of Stanford’s
wavelet research group consisting of Dave Donoho, Ian Johnstone et al., describing
the theoretical research underlying the algorithms in Wavelab. By studying these
scripts and by experimenting with the data, the reader can learn all the details of
the process that led to each figure. This forms part of the new discipline of Repro-
ducible Research, i.e., the idea to provide the reader full access to all details (data,
equations, code, etc.) needed to completely reproduce all the results normally
presented only in summary form in scientific publications. For example, there are
MATLAB® scripts to generate and exactly reproduce all the figures in the book
by Mallat (1998). The pioneer of such Reproducible Research is Jon Claerbout
of Stanford University’s Geophysics Department (Claerbout, 1994; Buckheit and
Donoho, 1995).

In addition, one can use Benoit 1.3: Fractal System Analysis (for Windows
95/98 or Windows NT), Trusoft International Inc., 204 37th Ave. N #133,
St Petersburg, FL 33704. Tel.: (813) 925-8131; Fax: (813) 925-8141;
sales@trusoft-international.com. See http://www.trusoft-international.com for
details. This Benoit software enables you to measure the fractal dimension and/or
Hölder-Hurst exponent of your data sets using your choice of method(s) for anal-
ysis of self-affine traces of speculative prices. However, astonishingly, the wavelet
routine in Benoit 1.3 is incorrect, although the other routines to compute the Hurst
exponent are correct.

7.6 Exercises

Exercise 310 Study and execute MATLAB® Exercises – Chapter 1, Wavelet
Display, in Strang and Nguyen (1997), p. 454. This assignment is designed to
familiarize the reader with the MATLAB® Wavelet Toolbox and its GUI (=Graphi-
cal User Interface). The assignment includes Wavelet Display, Continuous Wavelet
Transform, 1D and 2D DWT. It is assumed that the Wavelet Toolbox is installed.
At the MATLAB® prompt, type wavemenu. A window should pop up with choices
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ranging from Wavelet 1D to Wavelet Packet 2D to Continuous Wavelet 1D.
Closely follow Strang and Nguyen’s instructions.

Exercise 311 Study and execute MATLAB® Exercises – Chapter 1, CWT
in Strang and Nguyen (1997), pp. 454–455. Under File menu option,
select Load Signal. Choose the MATLAB® file MATLAB® on in /toolbox/
wavelet/wavedemo/freqbrk.mat.

Exercise 312 and follow Strang and Nguyen’s instructions. Notice the scalo-
gram. What does the scalogram show us (in detail)? Use the File menu
option to load another signal file of MATLAB® on ‘Nbs1’ (F:)/toolbox/wavelet/
wavedemo/qdchirp.mat, and again follow Strang and Nguyen’s instructions.

Exercise 313 Study and execute MATLAB® Exercises – Chapter 1, 1D DWT,
Strang and Nguyen (1997), p. 455. Under File menu option, select Load Signal.
Choose the MATLAB® file in /toolbox/wavelet/wavedemo/noisdopp.mat.

Exercise 314 and follow Strang and Nguyen’s instructions. Study the various
Decomposition and Statistics, Histogram, Compress and Denoise capabilities
(Note: the MATLAB® GUI follows Daubechies’ convention of giving the scal-
ing function and the lowest frequency wavelet the highest scaling number. Strang
and Nguyen gives them the lowest scaling number, i.e., the zero). Study in particu-
lar the automatic denoising and compression. Notice how few wavelet resonance
coefficients are required for an acceptable synthesis and reconstruction of the
original data series (= “signal”).

Exercise 315 Study and execute MATLAB® Exercises – Chapter 6, Multiresolu-
tion Analysis in 1D, Strang and Nguyen (1997), p. 466.

Exercise 316 Study and execute MATLAB® Exercises – Chapter 6, Wavelet
Packet in 1D, Strang and Nguyen (1997), p. 466.

Notes

1 In Chapter 8, we’ll provide an empirical analysis of Latin American financial markets
using Morlet (6) wavelets.

2 An electroencephalogram (EEG) is a recording of the electrical activity of the brain,
and an electroencephalograph is the instrument used for making the recording. The
technique, called electroencephalography, was first reported in 1929 by Hans Berger,
a German psychiatrist. The complexity of the brain and the inability of the electrical
recording apparatus to distinguish the direction of nerve impulses within the brain,
because it identifies correlations and not causalities, make it very difficult to interpret
the EEG. The frequency of these impulses also varies in different parts of the brain.
But certain distinctive, abnormal patterns are clearly associated with such situations as
epilepsy, stroke and brain tumors. Thus, the study of a patient’s EEG can aid in medical
diagnosis.
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3 Indeed, Brian Yuhnke Jr, one of the new media software programmers with whom I
work at Kent State University, interprets my current research as trying to find a real-time
“doppler radar for financial markets.” No doubt, his comment is inspired by the doppler
radar used for the weather report of Channel 3, the t.v. station in Cleveland, Ohio, close
to our university, and also used for tornado warnings.

4 Thus, a scalogram shows the localized conventional “R-squareds” between the time
series and each of the wavelets in the tiling diagram.

5 The scalegram corresponds with the average “R-squareds.”
6 Alfréd Haar (1885–1933) was born in Budapest, Hungary. In 1904, Haar travelled to

Germany to study at Göttingen under Hilbert’s supervision, obtaining his doctorate
in 1909 with a dissertation entitled Zur Theorie der Orthogonalen Funktionensysteme
(“The Theory of Systems of Orthogonal Functions”). Haar then taught at Göttingen until
1912, when he returned to Hungary and held chairs at the university in Kolozsvár (which
is now Cluj in Romania), Budapest University and Szeged University. Haar, together
with Riesz, rapidly made the new Szeged University a major mathematical center. Later
he went on to study partial differential equations. In 1932, he introduced a measure on
groups, now called the Haar measure, which allows an analogue of Lebesgue integrals
to be defined on locally compact topological groups. Thus, he generalized classical
measure theory! The Haar measure was used by both von Neumann and Pontryagin
in 1934 and by Weil in 1940 to set up an abstract theory of commutative harmonic
analysis. Only now, after Mallat created its tree-algorithm in 1988 and combined it
with the current advanced state of computing power, find these powerful abstract ideas
feasible applications in advanced time series analysis and in the analysis of financial
market risk.

7 Dyadic = based on a geometric sequence of ratio 2.
8 There exist now already better standards for the design of the multiresolution of signals

than MPEG, e.g., the design criteria for the archives of the digitized FBI fingerprints
and the design criteria for recent compact digital cameras, of which the filter allows
hundreds of pictures to be compressed and stored in a relatively small physical memory.

9 This section is for specialists and can be skipped in a first reading. It was Daubechies who
mathematically developed and researched these four important design criteria for WTs.

10 For example, the Gaussian distribution kernel, which can be presented as a wavelet, has
vanishing moments at p = 3 and for all p > 4.

11 Since the Gaussian has vanishing moments at p = 3 and for all p > 4, the Gábor
wavelet, which has a Gaussian atom, is very regular. We’ll discuss the concept of
α-Lipschitz irregularity in Chapter 8.
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8 Multiresolution analysis
of local risk

“Natura Saltus Facit”

(= “Nature Jumps” )1

8.1 Introduction

For the first time in history, huge quantities of high-frequency financial data are
currently being recorded and stored. Both financial price and volume data have
been recorded (Gopikrishnan et al., 1998):

• on a daily basis since the nineteenth century;
• with a sampling rate of one minute or less since 1984; and
• on a transaction-by-transaction (tick-by-tick) basis since 1993.

The first to collect and archive high-frequency, intraday foreign exchange (FX)
data from Reuters composite FXFX page were the researchers of the institute of
Olsen and Associates in Zürich, Switzerland (Müller et al., 1990; Dacorogna et al.,
2001). This was quickly followed by the massive data archiving project under the
directorship of Dr Würtz at the Eidgenössische Technische Hochschule (ETH:
Federal Technical University) in Zürich, who collected high-frequency data from
Reuters data selection feeds, mainly from RIC data records. His research group
collected the series of quoted prices of 355 major financial instruments, including
FX spot rates, forward rates, deposit rates, currency and deposit fixings, treasury
market yields and FX cross rates at a rate of 60 megabytes per month. Financial
futures, options and financial news subsequently followed.

Most of the series collected by both the Olsen and Associates and the ETH
groups contain unequally spaced prices in the time domain. Such unequal spacing,
or time warping of prices, produces a new research challenge in finance. Wavelet
multiresolution analysis (MRA) can very effectively deal with such time warping.
This ability of the wavelet MRA is one of the many reasons why this book advocates
its use as a major research tool in finance.
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The currencies involved in the instruments of the ETH project include those
of the G10 countries, Switzerland, the European Community, Hong Kong and
Australia. In Asia’s financial annus horibilis 1997, when the Asian Financial Cri-
sis erupted, I serendipitously collected, archived and analyzed a complete year of
seven minute-by-minute Asian FX data series from Reuters FXFX pages with the
assistance of three undergraduate students at the Nanyang Technological Univer-
sity in Singapore. Our Asian high-frequency FX series had the advantage of being
equally spaced in time, like conventional time series. But we’ve already noticed the
advantage of wavelet MRA in dealing with equally and unequally spaced, smooth
and irregular data, in particular, with both discontinuous and turbulent pricing
series.2

High-frequency records of financial prices, or of rates of return, in competitive
markets exhibit three striking characteristics:

(1) They are conspicuously discontinuous, i.e., they are singular at almost every
point, because the financial supply and demand curves move in unequal dis-
crete steps, in instantaneous response to discrete news events. For example,
Figure 8.1 shows on a time scale of 20 minutes the US Dollar/Deutsche Mark
(USD/DEM) exchange rates as mid-prices and as associated logarithmic dif-
ferences or rates of return (Schnidrig and Würtz, 1995, p. 2, figures 1 and 2).
In the right panel the quiet sections represent the two days of the weekends,
while there are daily fluctuations in the volatility of the log returns for the
five-day trading week.

(2) They are strictly non-stationary. However, they adhere to stable scaling or
power laws and they are stationary at particular scales. For example, Figure 8.2
shows the scaling law behavior for the USD/DEM exchange rate in a double-
logarithmic plot. This scaling law is independent from the source of data (in
the period 1993–1994) and holds over several orders of magnitude. The scal-
ing exponent H = 0.58 is significantly different from the Gaussian process
H = 0.5 (Schnidrig and Würtz, 1995, p. 4, figure 3).

(3) They show aperiodic cyclicity, i.e., they show intermittent periods of conden-
sation, succeeded by periods of rarefaction. Figures 8.3 and 8.4 demonstrate
the impact of the intraday cycles of average trading activity on the inten-
sity of the price changes in the global FX market (Dacorogna et al., 1993).
Although the FX market is active 24 hours per day, the social organization
of business, combined with the circadian cycle, forces the market activity
to experience temporal constraints in each financial region of the world. This
impacts the price formation. Similar day and weekend effects can be observed
in the stock market returns (French, 1980). Figure 8.3 (left and right panel)
shows the average hourly trading transaction density in the global FX market
as measured by the number of transactions per hour (Schnidrig and Würtz,
1995, p. 5, figure 6). Figure 8.4 (left and right panel) shows the mean absolute
hourly log-price change E{|� lnPt |} for the USD/DEM rate as a measure for
weekly averaged price risk or volatility per hour (Schnidrig and Würtz, 1995,
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Figure 8.1 USD/DEM exchange rate, computed as a mid-price (upper) and as the
associated logarithmic difference (lower), on a time scale of �t = 20
minutes, October 5–November 2, 1992.

Source: USD/DEM from Reuters FXFX pages 5.10.1992–2.11.1992.

p. 6, figure 8). The time on the abscissa of the weekly figures in Figure 8.3
(lower) and 8.4 (lower) is measured in 7 × 24 = 168 hours per week.
Time is measured in Greenwich Mean Time (GMT) and starts on Monday
0:00 GMT.



Multiresolution analysis of local risk 233

2.94–5.94 Reuters RIC

Scaling power law

In (time diff. seconds)

In
 (

m
ea

n 
ab

so
lu

te
 p

ric
e 

ch
an

ge
s)

–2.0

–3.0

–4.0

–5.0

–6.0

–7.0

–8.0

–9.0
6.0 8.0 10.0 12.0 14.0 16.0 18.0

8.93–5.94 Future Source
1.86–5.94 Knight Ridder
1.79–4.93 CSI Inc.
2.86–9.93 O&A FXFX

Figure 8.2 Scaling law behavior of the USD/DEM exchange rate in the period
1993–1994, for various subperiods: ln(mean absolute price changes) versus
ln(time difference in seconds): lnE{|�Pt |}/ ln�t .

Source: USD/DEM various vendors and time periods.

Notice that the three peaks in both Figures 8.3 (right) and 8.4 (right) relate
to the maximum market activity in America (main peak), Asia (smallest peak),
and Europe (small peak), respectively. There is very little trading during the
weekends. The peaks in the trading activity in Figure 8.3 correspond with the
peaks in price volatility or risk in Figure 8.4.

It is also observed that stock prices or foreign exchange rates are singular at
almost every point, since their transaction records are essentially represented by
step functions over time. The prices “jump” in small steps, because of small shifts
in their respective supply and demand curves. The typical mechanism in price for-
mation involves both knowledge of the present and expectations about the future.
Even when the exogenous physical determinants of prices vary continuously,
expectations can change drastically and instantaneously.

Such discontinuous price data are similar to particular physiological measure-
ment data, such as heart records, electromagnetic fluctuations in galactic radiation
noise, textures in images of natural terrain, variations of electric grid or traffic flows,
etc. However, not all singularities are alike! Knowing the degree of irregularity
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Figure 8.3 Trading transaction density: daily (upper) and weekly (lower) averaged
number of ticks per hour. The tick labels are in GMT and start on Monday
0:00 GMT (October 5, 1992–September 29, 1993).

Source: USD/DEM from Reuters FXFX page 5.10.1992–26.9.1993.

of such discontinuities, or singularities, is important in analyzing their properties.
In finance, knowing the distributions of the degrees of irregularity of financial
time series is necessary for a correct analysis and valuation of the non-stationary,
aperiodic, but cyclic financial risk.
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Figure 8.4 Daily (upper) and weekly (lower) averaged volatility per hour of the
USD/DEM exchange rate. Tick labels are in GMT and start on Monday
0:00 GMT (October 5, 1992–September 26, 1993).

Source: USD/DEM from Reuters FXFX page 5.10.1992–26.9.1993

For this purpose, we return in this chapter to our original informal definition of
irregularity or “randomness” of Chapter 1. This time we provide a proper formal
definition of measurable irregularity, as measured by the Lipschitz (ir-) regularity
exponent αL.3
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Pointwise measurements of Lipschitz regularity exponents, which measure the
degree of irregularity of singularities, are not possible, because of finite numerical
resolution of the empirical data. After discretization, each data set corresponds
to a time interval where the time series has a very large (but finite) number of
singularities. These singularities may show similarities, but they may also all
be different. Such singularity distributions, or singularity spectra must therefore
be computed from global measurements, which take advantage of multifractal
self-similarities inherent in the financial data.

In the preceding chapters, we found that the Fractional Brownian Motion (FBM)
provides a convenient uni-parametric model for such self-similar time series (cf.
Chapter 4). FBMs are statistically self-similar i.i.d. processes, which exhibit
long-term dependencies. Despite their non-stationarity, one can define a power
spectrum, based on their stationary increments, that exhibits power decay. Thus,
FBMs exhibit 1/ω-type spectral behavior over wide ranges of radian frequencies
ω (cf. Chapter 4). Realizations of FBMs are almost everywhere singular, with the
same homogeneous αL-Lipschitz regularity at all points.

On the other hand, unlike FBMs, there exist fractal random processes that are
not homogeneous αL-Lipschitz irregular, although their power spectrum shows
power decay. Empirical realizations of these processes may include increments
of various types other than the familiar i.i.d. innovation processes of the classical
Geometric Brownian Motion (GBM). Therefore, the computation of a complete
singularity spectrum with a fractal dimension dependent on the Lipschitz regularity
exponent αL is important for such non-FBM cases, as we’ll discuss at the end of
this chapter.

To give a preview of the following topics: after discussing how to measure
the irregularity or multifractal spectrum of time series x(t), by implementing
the wavelet MRA of Chapter 7, we’ll discuss in the next chapter the phe-
nomena of deterministic financial chaos. In Chapters 9 and 11 we’ll present
the current efforts to provide mathematical theories for financial turbulence. In
Chapter 10 we’ll give a simple example of a nonlinear dynamic interest rate term
structure that demonstrates how financial intermittence and complete chaos can
occur.

Financial turbulence theories are in debt to the original theory of physical tur-
bulence of Kolmogorov of 1941, to his later amendment in 1962, and to the
corrections by Mandelbrot in the 1970s and 1980s. Such theories are currently
progressing far beyond Kolmogorov’s fundamental insights, thanks to the ana-
lytic measurements provided by the wavelet MRA. One of the new insights
by Frisch, Parisi and Farge is that turbulence is a heterogeneous multifractal
phenomenon of which we can determine a multifractal spectrum of singular-
ities from wavelet MRA. In addition, by using Galerkin’s method of finite
elements, wavelet MRA helps to numerically solve the dynamic Navier–Stokes
nonlinear diffusion equations, which represent still the best dynamic model to
explain turbulence, since it is based on fundamental mathematical and physical
system laws.
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8.2 Measurement of local financial market risk

8.2.1 Time-scale analysis of FBM

Due to the self-similarity, or scaling property of the FBM, Flandrin (1989, 1992)
and Mallat (1989a) examined the FBM’s behavior relative to different obser-
vational time scales, using self-similar wavelet MRA. A second-order moment
analysis of the wavelet resonance coefficients of the FBM reveals a stationary struc-
ture at each scale and a power-law behavior of the wavelet coefficient’s variance,
from which the average Lipschitz exponent αL of the FBM can be computed.

Reviewing the various aspects of the FBM that we discussed in Chapters 4
and 5, we first established that the autocovariance function of the FBM x(t) is
represented by:

γ (τ) = E{x2(τ )}
= σ 2

ε τ
2d−1

= σ 2
ε τ

2H−2 (8.1)

which shows it to be non-stationary, and self-similar, since the second moment
is a scaling law of the time lag τ . Next, we established that the average power
spectral density of the FBM is:

P(ω) = σ 2
ε ω

−2(d+1)

= σ 2
ε ω

−(2H+1) (8.2)

which is also a scaling law, this time of the frequency ω, or scale a ∼ 1/ω.
Furthermore, the FBM is statistically self-similar in the sense that for any constant
c > 0, and with the convention that x(0) = 0, we find the distributional scaling

x(cτ)
d= cd+0.5x(τ)

= cHx(τ) (8.3)

where
d= means equality in distribution, as discussed in Chapter 3. This means in

frequency terms that the power spectrum of the FBM is represented by

F[γ (cτ)] = 1

|c|2P
(ω
c

)

= σ 2
ε

|c|2
(ω
c

)−2(d+1)

= c2H−1σ 2
ε ω

−(2H+1) (8.4)

Thus, any portion of a given FBM can be viewed as a scaled version of a larger
part of the same process, both in the time domain and in the frequency domain.
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Consequently, an individual realization of the FBM is a fractal time series and
has a unique fractal dimension D, which is related to the Hurst H -exponent, as
follows

D = 2−H (8.5)

In summary, the FBM has two important features:

(1) non-stationarity, which requires time-dependency analysis; and, more
specifically,

(2) self-similarity, which requires time-scale power law analysis.

Since Mallat’s wavelet MRA provides such a localized time-scale analysis, it is
the natural tool to examine empirical FBMs.

8.2.2 Lipschitz analysis of local financial risk

The Fourier Transform analyzes the global regularity of a financial time series
x(t). The Wavelet Transform analyzes the pointwise irregularity of a financial
time series x(t). FBM traces are locally very irregular: they are continuous time
series, but their first derivatives exist almost nowhere, i.e., their increments consist
of singularities almost everywhere.

Definition 317 A time series is called regular if it can be locally approximated by
a polynomial, i.e., a particular mathematical system. If not, it is called completely
irregular.

Therefore, we must now introduce the formal definition of irregularity or
“randomness.”4 It appears that there are degrees of local irregularity, from highly
regular to highly irregular (Pincus and Singer, 1996). These degrees of irreg-
ularity are measured by the Lipschitz regularity exponent αL.5 If x(t) has a
singularity at time τ , which means that it is not differentiable at τ , the Lipschitz
regularity exponent αL characterizes this singular behavior at time τ . When we
measure the Lipschitz αL of a singularity, we assess how irregular or random such
a singularity is. Consequently, we no longer have to assume the degree of random-
ness of a time series. We can measure the degree of its randomness by determining
its Lipschitz αL! In this section, we’ll develop an apparatus to measure Lipschitz
αL, using Mallat’s MRA from the preceding chapter.

The Lipschitz regularity exponent αL is based on the approximation error of
the Taylor expansion formula, which relates the differentiability of the continuous
time series x(t) to a local polynomial approximation.

Definition 318 Suppose that x(t) is d times differentiable in the bounded interval
[τ − ε, τ + ε] for a small ε. Then we can expand x(t) in a Taylor expansion
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as follows

x(t) = x(τ)+ x(1)(τ )(t − τ)+ x
(2)(τ )

2! (t − τ)2 + · · ·

+ x
(d−1)(τ )

(d − 1)! (t − τ)
d−1 + ετ (t)

=
[
d−1∑
k=0

x(k)(τ )

k! (t − τ)k
]
+ ετ (t)

= x̂τ (t)+ ετ (t) (8.6)

where x(k)(t) is the kth derivative of x(t). The x̂τ (t) = [· · · ] part is the exact
polynomial Taylor expansion of x(t) at time τ , or systematic component, and the
ετ (t) = x(t) − x̂τ (t) is the approximation error, or unsystematic component, of
this Taylor expansion.

Remark 319 Statisticians often call the approximation error ετ (t): the residual.
It is clear that the character of this residual depends on the number of differentiation
terms included in the linear Taylor expansion. Therefore, one cannot ascribe
inherent characteristics like “Gaussian distribution” to this residual, since such
characteristics are not sui generis. Still, this is what statisticians conventionally
(conveniently, but unfortunately) do!

The Taylor expansion proves that the approximation error

ετ (t) = x(t)− x̂τ (t) (8.7)

satisfies

for all t ∈ [τ − ε, τ + ε],

|ετ (t)| ≤ sup
u∈[τ−ε,τ+ε]

∣∣∣∣x(d)(u)
∣∣∣∣ |u− τ |dd! (8.8)

The dth-order differentiability of x(t) in the neighborhood of τ yields an upper
bound on the approximation error ετ (t) when t tends to τ , i.e., when the time
interval becomes smaller. The following Lipschitz regularity refines this upper
bound with the fractional Hölder exponent d , introduced in Chapter 4.

Definition 320 (Lipschitz) A time series x(t) is pointwise αL-Lipschitz regular,
with regularity exponent αL ≥ 0 at point τ , if there exists a K > 0, and a
polynomial x̂τ of degree �αL� such that for all real time t ∈ R, the absolute value
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of the error is bounded by:

|ετ (t)| = |x(t)− x̂τ (t)|
≤ K|t − τ |d
= K|t − τ |αL (8.9)

or, equivalently:

|ετ (t)|1/αL = |x(t)− x̂τ (t)|1/αL ≤ K ′|t − τ | (8.10)

where K ′ = K1/αL .

Definition 321

• A time series x(t) is uniformly αL-Lipschitz regular over the interval [a, b]
if it is pointwise Lipschitz αL for all τ ∈ [a, b], with a constant K that is
independent of τ .

• The Lipschitz regularity exponent of x(t) at point τ or over the interval [a, b]
is the supremum of αL such that x(t) is αL-Lipschitz regular (pointwise or
uniformly).

This is a (very) technical definition of irregularity and a new definition of local
(financial) risk, which requires some additional explication. At each time point τ ,
the polynomial x̂τ (t) is uniquely defined. If x(t) is d = �αL� times continuously
differentiable in the neighborhood of τ , then x̂τ (t) equals the linear Taylor expan-
sion of x(t) at τ . Thus, when αL is an integer, the regularity at point τ is defined
as usual, with αL indicating the order of differentiability of x(t).

When αL is not an integer, but a fraction, let d be an integer such that d <
αL < d + 1, then x(t) has an αL- Lipschitz regularity at τ , if its derivative x(t)(d)

of order d resembles |t − τ |αL−d locally around point τ . Furthermore, the degree
of regularity of x(t) in a time domain is that of its least regular point. The greater
αL, the more regular is the time series x(t). The smaller αL, the more irregular, or
“risky,” is the time series x(t).

Remark 322 There exist multifractal time series x(t)with non-isolated singular-
ities, where x(t) has a different Lipschitz αL at each point τ . In contrast, uniform
Lipschitz αL exponents provide a more global measurement of regularity, which
applies to a whole interval. If a time series x(t) is uniformly Lipschitz αL > d,
or monofractal, where d is an integer, then one can verify that x(t) is d times
continuously differentiable in that neighborhood.

What values of the Lipschitz αL exponent should one expect for the various
kinds of singularities? If 0 ≤ αL < 1, then x̂τ (t) = x(τ) and the Lipschitz
condition becomes:

for all t ∈ R, |x(t)− x(τ)| ≤ K|t − τ |αL (8.11)

A time series x(t) that is bounded, but discontinuous at time τ is Lipschitz αL = 0
at the time of the discontinuity τ . If the Lipschitz regularity is 0 < αL < 1 at
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τ , then x(t) is continuous, but not differentiable at τ and the αL characterizes
the degree, or type, of irregularity. If αL = −1, the discontinuity “flip-flops” (cf.
Figure 8.7).

What is the Lipschitz regularity condition for the Fourier Transform and for the
Wavelet Transform, respectively?

8.2.2.1 Fourier regularity condition

The precise definition of the Lipschitz-αL regularity in the frequency domain, in
addition to the one we already have in the time domain, is provided by the following
theorem.6

Theorem 323 A function x(t) with Fourier Transform F(ω) is bounded and
uniformly Lipschitz-αL over the domain of real numbers R, if∫ +∞

−∞
|F(ω)|(1+ |ω|αL)dω < +∞ (8.12)

Remark 324 This uniform regularity condition is obviously a global regularity
condition, since it holds true over the whole (−∞,+∞) frequency domain.

Next, we will discuss the required regularity condition of wavelets.

8.2.2.2 Wavelet regularity condition

The basic wavelet regularity condition is that it is a fast decaying wavelet with p
vanishing moments.7 In fact, if a function is continuous, has vanishing moments,
decays quickly towards 0 when t →∞, or equals 0 outside a particular interval,
it is already a likely candidate for a wavelet!

Theorem 325 A waveletψ(t) with a fast decay has p vanishing moments, if and
only if there exists a function θ(t) with a fast decay such that

ψ(t) = (−1)pθ(p)(t)

= (−1)p
dpθ(t)

dtp
(8.13)

As a consequence, the CWT or resonance coefficient is equivalent to the
following multiscale differential operator

W(τ, a) =
∫ ∞

−∞
x(t)ψ∗τ,a(t)dt

= ap d
p

dτp
{[x(t) � θa(t)](τ )} (8.14)

with the scaled wavelet

θa(t) = 1√
a
θ

(
t

a

)
(8.15)
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Table 8.1 Degree of Lipschitz irregularity of Daubechies wavelets

ψ DB1(= Haar) db2 db3 db4 db5 db7 db10

αL 0 0.5 0.91 1.27 1.69 2.15 2.90

where the � sign indicates again the convolution operator (cf. Chapter 5). This
provides a test whether the wavelet ψ has more than p vanishing moments.
Compute

∫ +∞

−∞
tpψ(t) dt = (i)pψ̂(p)(0) = (−i)pp!θ̂ (0) (8.16)

Clearly, the wavelet ψ(t) has no more than p vanishing moments if and only if:

θ̂ (0) =
∫ +∞

−∞
θ(t)dt �= 0 (8.17)

Remark 326 An example of such a fast decaying wavelet is the Gábor’s Gaussian
wavelet, or chirp, discussed in Chapter 6.

The degree of irregularity of certain wavelets is known. Table 8.1 gives
some indications of the Lipschitz-αL irregularity of Daubechies wavelets indexed
by DBN .

Selecting an irregularity and a wavelet to measure this irregularity is useful for
estimations of the local properties, like the intrinsic or local risk, of a financial
time series. From a practical point of view, these questions arise in finance in
dealing with financial markets for fine microstructure studies of high-frequency
(= very fast) trading transactions. Let’s now see, how we can approach the mea-
surement of the irregularity or intrinsic risk of such high-frequency financial
transactions.

If x(t) is a financial time series which is a little bit more than p times differ-
entiable at point τ , then it can be approximated by a polynomial of degree p, as
we’ve already seen in Chapter 4. For example, it can be approximated by a Markov
process of order p, which can represent trends and regular periodic oscillations.
As we noticed earlier, the Wavelet Transforms of such exact polynomials are zero.
But around point τ , its order is that of the error between the polynomial and the
time series |x(t) − x̂τ (t)|. If this error can be uniformly estimated on an interval
[a, b], this insight yields a tool for irregularity or local risk analysis on that interval
and we can estimate the fractal order d of the financial time series x(t).
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8.2.3 Asymptotically decaying wavelet amplitudes

The decay of the Wavelet Transform amplitude across all scales is related to the uni-
form and pointwise Lipschitz regularity of the financial time series x(t). Measuring
this asymptotic decay is equivalent to zooming into the time series structure with
a scale that goes to zero. The following theorems relate the uniform and pointwise
Lipschitz regularity of x(t) on an interval to the amplitude of its Wavelet Trans-
form at the very fine scales. If we then measure the amplitude of the measured
decaying wavelet resonance coefficients, we can find out what the Lipschitz αL
regularity of x(t) is and thus its fractal difference order d.

Theorem 327 (Mallat) If x(t) ∈ L2(R), an element of the Hilbert space, and is
uniformly Lipschitz αL ≤ p over the interval [a, b] then there exists a constant A
such that

for all (τ, a) ∈ [a, b]×R
+,

|W(τ, a)| ≤ AaαL+0.5

= Aad+0.5 (8.18)

Conversely, if |W(τ, a)| satisfies this last inequality and if αL is not an integer,
but a fraction αL < p, then the time series x(t) is uniformly αL-Lipschitz on the
interval [a + ε, b − ε], for any ε > 0.

Remark 328 The inequality is really a condition on the asymptotic decay of the
absolute value of the wavelet resonance coefficient |W(τ, a)|, when its scale a goes
to zero. At larger scales it does not introduce any constraints since the Cauchy–
Schwarz inequality guarantees that the Wavelet Transform is always bounded:

|W(τ, a)| = | 〈x(t), ψτ,a(t)〉 |
≤ ‖x(t)‖‖ψτ,a(t)‖ (8.19)

where the norms (= risk contents) ‖x(t)‖ <∞ and ‖ψτ,a(t)‖ <∞.

Jaffard (1991) generalized Mallat’s Theorem to pointwise Lipschitz regularity,
while Mallat’s Theorem can be viewed as a corollary of Jaffard’s Theorem (Jaffard,
1989; Farge, et al., 1993). Jaffard’s Theorem provides a necessary and a sufficient
condition on the modulus of the Wavelet Transform for computing the Lipschitz
regularity of x(t) at point τ .
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Theorem 329 (Jaffard) If x(t) ∈ L2(R) is Lipschitz αL ≤ p at point υ in time,
then there exists a constant A such that

for all (τ, a) ∈ R× R
+,

|W(τ, a)| ≤ AaαL+0.5
(

1+
∣∣∣∣τ − υa

∣∣∣∣
αL
)

(8.20)

Conversely, if αL < p is not an integer and there exist A and αjL < αL such that

for all (τ, a) ∈ R× R
+,

|W(τ, a)| ≤ AaαL+0.5
(

1+
∣∣∣∣τ − υa

∣∣∣∣
αL
)

(8.21)

then x(t) is Lipschitz αL at υ.

To interpret more easily the necessary and sufficient conditions of Jaffard’s The-
orem, suppose that the wavelet ψu,a(t) has a compact support equal to [−C,C].
Then we can formulate the following definition of the cone of influence of a
particular point υ on the time line.

Definition 330 The cone of influence of υ in the scale-time plane is the set of
points (τ, a) such that υ is included in the support of the CWT wavelet

ψτ,a(t) = 1√
a
ψ

(
t − τ
a

)
(8.22)

Since the support of this wavelet is equal to [τ − Ca, τ + Ca], the cone of
influence of υ is defined by

|τ − υ| ≤ Ca (8.23)

or, equivalently,

|τ − υ|
a

≤ C (8.24)

For example, Figure 8.5 shows the cone of influence for a time abscissa at t = v
in a scalogram.

Example 331 Figure 8.6 shows the regions of influence in scalograms (a and
c) for the CWT and spectrograms (b and d) for Gábor’s Short-Term or Windowed
Fourier Transform (STFT) for the singularity of a Dirac pulse δ(ω) at time t =
t0, as well as three sinusoids of frequencies ω0 = ω0, ω1 = 2ω0, ω3 = 4ω0,
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Figure 8.5 The cone of influence of an abscissa singularity ν consists of the time-scale
points (u, a) for which the support of the wavelet ψu,a intersects the time
point t = v.
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Figure 8.6 Singularity cones of influence of a Dirac pulse at t = t0 for (a) the CWT
and for (b) the STFT; versus monochromatic bands of influence of three
sinusoids for (c) the CWT and for (d) the STFT.

respectively (cf. Chapter 6). The scale is a = ω0/ω. Notice that for the CWT in (a)
the width of the cone of influence of the Dirac pulse is scale-frequency dependent,
while for the STFT in (b) it remains constant and is scale-frequency independent.
Furthermore, for the CWT in (c) the monochromatic resonance bands differ in
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width according to the scale-frequency, while for the STFT in (d) the width of the
monochromatic resonance bands are scale-frequency independent.

Using a reformulation of the cone of influence, Jaffard’s necessary and sufficient
conditions can be considerably simplified, as follows:

|W(τ, a)| ≤ AaαL+0.5
(

1+
∣∣∣∣τ − υa

∣∣∣∣
αL
)

≤ AaαL+0.5(1+ CαL)
= A′aαL+0.5 (8.25)

which is identical to the uniform Lipschitz condition of Mallat’s Theorem!
Jaffard’s Theorem relates the pointwise irregularity, e.g., the singularities,

of a time series to the decay of the modulus maximum of its Wavelet Trans-
form |W(τ, a)|. This will assist us with the measurement of the degree of local
financial risk.

8.2.4 Measuring various price singularities

We will now discuss the innovative concepts of modulus maxima and the max-
ima line to detect and measure the various kinds of singularities (Hwang and
Mallat, 1994).

Definition 332 The modulus maximum of a Wavelet Transform is any point
(τ0, a0) such that |W(τ, a)| is locally maximum at τ = τ0. This implies

∂|W(τ0, a0)|
∂τ

= 0 (8.26)

Definition 333 The maxima line is any connected curve a(τ) along the scale
ordinate in the time-scale plane (τ, a) along which all points are modulus maxima.

Singularities can thus be detected by finding the abscissa where the wavelet
modulus maxima converge at the very fine scales of, say, high-frequency financial
data. The following Theorem by Hwang and Mallat proves that if the Wavelet
Transform W(τ, a) has no modulus maxima at fine scales, then the time series
x(t) is locally regular. Otherwise stated, there cannot be a singularity without a
local maximum of the Wavelet Transform at the very fine scales.

Theorem 334 (Hwang, Mallat) Suppose that the wavelet ψ(t) is Cp

(= continuous of order p) with a fast decay, has p vanishing moments with



Multiresolution analysis of local risk 247

compact, finite support, and

ψ(t) = (−1)pθ(p)(t) (8.27)

with the Gaussian wavelet θ(t) such that

∫ +∞

−∞
θ(t)dt �= 0 (8.28)

Let x(t) ∈ L1[c, d]. If there exists a0 > 0 such that |W(τ, a)| has no local
maximum for τ ∈ [c, d] and a < a0, then x(t) is uniformly Lipschitz p on
[c + ε, d − ε] for any ε > 0.

This important and insightful theorem implies that x(t) can be singular (= not
Lipschitz-1) at a point υ only if there is a sequence of wavelet maxima points that
converges towards the time point υ at very fine scales:

lim
n→+∞ τn = υ and lim

n→+∞ an = 0 (8.29)

This sequence of wavelet maxima indicates the presence of a maximum modulus
of the Wavelet Transform at the very fine scales where a singularity occurs.

In the general case, a sequence of modulus maxima, or maxima line, may be
detected, which converges to the particular singularity. When the wavelet is the
pth derivative of a Gaussian wavelet θ(t) (= Gábor wavelet), these maxima lines
are connected and go through all of the finer scales. The decay rate of the maxima
along the maxima ridges indicates the order of the isolated singularities. This can
be easily shown, since from the Jaffard Theorem for τ = υ, we have for the
log–log inequality:

log2 |W(τ, a)| ≤ (αL + 0.5) log2 a + log2 A
′ (8.30)

Thus, one should display the modulus maxima of the Wavelet Transform as a
function of scale a in a log–log plot, and its computed slope will be b = αL+ 0.5,
from which we then can immediately identify the Lipschitz αL. For example, when
this slope is b = αL + 0.5 = 0.5, the time series is Lipschitz αL = 0 and, thus,
exhibits a discontinuity. But when the slope b = αL + 0.5 = 1, the time series is
Lipschitz αL = 0.5. In other words, the degree of irregularity (= “randomness”)
of each singularity can be separately assessed. No longer have we to assume that
some price singularity is random. We can now precisely locally measure its degree
of irregularity, randomness or riskiness, as the following examples demonstrate!

Example 335 Figure 8.7 provides the first example of this kind of financial risk
analysis. In the top panel (a) we see a time series or signal S1 = x(t), which
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S1

(a)

(b)
W21 (x )

W22 (x )

W23 (x )

W24 (x )

Figure 8.7 Wavelet decomposition of a time series with singularities. In the top panel
(a) we see a time series or signal S1 = x(t), which contains four singu-
larities, characterized, respectively by the Lipschitz αL and the smoothing
scale s: (αL = 0, s = 0), (αL = 0, s = 3), (αL = −1, s = 0) and
(αL = −1, s = 4). In the lower panel (b) we see four scales of wavelet
decomposition.

contains four singularities, characterized, respectively by the Lipschitz αL and
the smoothing scale s: (αL = 0, s = 0), (αL = 0, s = 3), (αL = −1, s = 0),
and (αL = −1, s = 4). In the lower panel (b) we see four scales of wavelet
decomposition (Mallat and Zhong, 1992, p. 86). It is clear that the behavior of
the local maxima across the wavelet scales depend on the Lipschitz αL and the
smoothing scale s. Notice that the “sharpest” singularity, (αL = 0, s = 3), and
(αL = −1, s = 0) are best detected at scale level a = 1, while the “softest”
singularity, (αL = 0, s = 0) and (αL = −1, s = 4) are best detected at scale
level a = 4. But each scale level provides its own piece of information about each
of the different singularities.

Example 336 Figure 8.8 provides a more complex financial risk analysis. At
the top we have 256 observations of the irregular time series x(t), which shows
different kinds of singularities: from step functions at the left, to a sharp peak
in the middle, followed by a discontinuity and a very “random” looking series.
The question is how we can characterize these singularities of x(t) using the
scalogram based on the CWTW(τ, a). Panel (a) shows the scalogram PW(τ, a) .
The horizontal and vertical axes measure t and log2 a, where a is the dyadic scale.
Panel (b) shows the modulus maxima of the W(τ, a). Notice that the “random”
looking series part is represented by a series of modulus maxima. The continuous
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Figure 8.8 How to measure the degree of irregularity of local risk of a series of price
singularities x(t) : (a) the scalogramPW(τ, a), (b) the modulus maximae of
theW(τ, a), (c) continuous line: the decay of log2 |W(τ, a)| as a function
of log2 a along the most left maxima line that converges on the abscissa
point t = 14. Dashed line: the decay of log2 |W(τ, a)| along the maxima
line that converges to time point t = 108.
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line in panel (c) gives the decay of log2 |W(τ, a)| as a function of log2 a along the
most left maxima line that converges to the abscissa t = 14. The dashed line in
panel (c) gives the decay of log2 |W(τ, a)| along the maxima line that converges
to t = 108 (Mallat, 1998, p. 180).

8.3 Homogeneous Hurst exponents of monofractal
price series

Now, let’s discuss how this mathematical apparatus of wavelet regularity conditions
can be used: first, to compute the uniform Lipschitz regularity exponent αL, or,
equivalently, the homogeneous HurstH -exponent for our main model for financial
risk, the FBM. This is followed by computation of the pointwise Lipschitz αL
to characterize the singularity or local risk spectrum of multifractal non-FBM
processes. We begin with simple computations of homogeneous H -exponents for
the FBM, using the wavelet detail coefficients dj,n from Mallat’s MRA. Next, we
will compute a multifractal spectrum of heterogeneous H -exponents or αL’s for
non-FBM processes.

The heterogeneous or multifractal local risk spectrum characterizes the scaling
and singularity structures of time series and has already proved to be a useful tool
for numerous applications, from (electric) network traffic analysis to the analysis
of turbulence in high-frequency financial time series. The computation of the
complete local multifractal risk spectrum from a finite data record has long escaped
the capability of the turbulence researcher, but the preceding general irregularity
analysis shows that this kind of local risk analysis is now completely possible.

8.3.1 Logarithmic scalegram based on discrete wavelet MRA

Let’s begin with the computation of the homogeneous Hurst exponent of global
financial risk. When we discussed the MRA in Chapter 7, we stated that the
Discrete wavelet Transform (DWT) coefficient of the FBM x(t) is computed as the
inner product of x(t) and the basic discrete, dyadic, orthonormal wavelet ψ , e.g.,
the Haar wavelet, by the usual approach, as follows

dj,n = 2−j/2
∫ +∞

−∞
x(t)ψ(2−j t − n)dt, withj, n ∈ Z (8.31)

The tiling of the time-scale space by the resulting wavelet Heisenberg boxes
is shown in Figure 8.9. For example, the d0,0 coefficient represents the mean of
x(t). These wavelet resonance coefficients dj,n of an FBM have the following four
properties, as proved by Flandrin (1992) and by Flandrin and Gonçalvès (1996):

(1) The wavelet resonance coefficients are stationary in distribution, i.e., they are
stably distributed:

dj,n
d= dj,0 for all n (8.32)



Multiresolution analysis of local risk 251

d
4,0

d4,0

d3,0

d2,0

d1,0
d0,0

d1,1

d2,1

t

d2,2 d2,3

d3,1 d3,2 d3,3 d3,4 d3,5 d3,6 d3,7

d4,1 d4,2 d4,3 d4,4 d4,5 d4,6 d4,7 d4,8 d4,9 d4,10 d4,11 d4,12 d4,13 d4,14 d4,15

d
4,1

d
4,2

d
4,3

d
4,4

d
4,5

d
4,6

d
4,7

d
4,8

d
4,9

d
4,10

d
4,11

d
4,12

d
4,13

d
4,14

d
4,15

d
4,16

d
4,17

d
4,18

d
4,19

d
4,20

d
4,21

d
4,22

d
4,23

d
4,25

d
4,24

d
4,26

d
4,27

d
4,28

d
4,29

d
4,30

d
4,31

Figure 8.9 Complete wavelet tiling: the relation of the DWT coefficients dj,n to the
time-scale tiles. This demonstrates the completeness of a financial risk analysis
by wavelet MRA.

(2) The wavelet resonance coefficients are Gaussian distributed:

dj,n ∼ N(0,Var(dj,n)) (8.33)

Remark 337 Consequently, the squared resonance coefficients, or local wavelet
risk, are Chi-squared distributed:

|dj,n|2 ∼ χ2 (8.34)

This statistical property allows for significance testing of the wavelet coefficients.
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Remark 338 If one wants to verify that the statistical distribution for the local
wavelet risk is, indeed, Chi-squared distributed, one can apply the following Monte
Carlo method: (1) create a large number, say 100,000 random time series, each
with as many points as the financial time series x(t), t = 1, . . . , T to be ana-
lyzed; (2) then take the Wavelet Transform for each of the random time series and
compute all the local wavelet risks |dj,n|2; next, (3) take a time slice from the
middle (time n = T/2); (4) at each scale j , sort all selected 100,000 local wavelet
risks into increasing order; (5) then make a plot of the local wavelet risk versus
the sorted index number; (6) look at what the local wavelet risk is for number
95,000 out of 100,000, then 95 percent of the local wavelet risk is below that
value, and only 5 percent is above; (7) this 95 percent level is the staistician’s con-
ventional 95 percent confidence level (or 5 percent significance level). This Monte
Carlo method can be generalized to any process where the statistical distribu-
tion is unknown, yet one wants to determine statistical confidence, or significance
levels.

Flandrin (1989, 1992) and Kaplan and Kuo (1993) also proved that the variance
of these wavelet resonance coefficients dj,n of the FBM is represented by the
following scaling law, which is the integration of the Chi-squared distribution of
the squared resonance coefficients:

Var{dj,n} = E{|dj,n|2}

= σ
2
ε

2
Vψ(H)(2

j )−(2H+1) (8.35)

where the constant Vψ(H) depends on both the ACF γψ(τ) of the chosen wavelet
ψ(t) and the H -exponent, as follows:

Vψ(H) = −
∫ +∞

−∞
γψ(τ)|τ |2Hdτ (8.36)

with

γψ(τ) =
∫ +∞

=∞
ψ(t)ψ(t − τ)dt (8.37)

Thus, by taking the dyadic logarithm of Var{dj,n}, we find the linear relationship
from which we can compute H

log2[Var{dj,n}] = −(2H + 1)j + log2

[
σ 2
ε

2
Vψ(H)

]
(8.38)
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Since the second (intercept) term is a constant, we plot log2[Var{dj,n}] against
the scale coefficient j to find the slope value (2H + 1) and thus H (Wornell and
Oppenheim, 1992; Wornell, 1993). This average or global wavelet (log) scalegram
delivers the same analytic irregularity measurement result of the homogeneous
Hurst exponent H as the (log) Fourier power spectrum.

The other two properties of importance for this MRA analysis:

(3) The wavelet resonance coefficients are almost uncorrelated:

E{di,ndj,m}  |2−in− 2−jm|2(H−R) and (8.39)

(4) The wavelet resonance coefficients scale:

dj,n
d= 2jH d0,n (8.40)

Remark 339 Because of property (2) and (3) it is often asserted that the FBM
wavelet resonance coefficients are exactly uncorrelated and hence independent
(Gonçalvès et al., 1998). But this is, strictly speaking, not true since they scale.
They are stably distributed (cf. Chapter 4).

8.3.2 Scalegrams of heart arrhythmias and stock prices

We will now discuss two applications of the preceding analysis to compute homo-
geneous Hurst exponents from the dyadic logarithmic plot of wavelet resonance
coefficients: a wavelet MRA of the heartbeat of a healthy human and of the Dow
Jones Industrial Average Index (DJIA). The heartbeat inter-arrival times resemble
those of foreign exchange quotations. Both these exemplary analyses are from
Flandrin (1992). The persistence of the DJIA has also been studied by Lo and
Mackinlay (1999) by non-wavelet, econometric time series methods. They pro-
duced similar results. In addition, we include some interesting scalograms and
scalegrams based on wavelet MRA of Latin American financial markets around
the times of major trading regime changes.

8.3.2.1 Scalegram of heart beats

Figure 8.10 shows the computation of the global or homogeneous Hurst exponent
for heartbeat inter-arrival times X(t) in seconds for a healthy human patient, of
which 65,536 heartbeats are shown in the top panel. It is clear that this heart is
not strictly periodic and that it shows arrhythmias: it is aperiodic cyclical. Fractal
analysis is thus warranted. The time series is again analyzed using a Daubechies(5)
wavelet basis and MRA tiling. In panel (a) the log2[Var{dj,n}] is plotted versus
the scale j = m. The scale in this panel (a) is such that a low scale j means low
frequency while a high scale means low frequency. The approximate slope of the
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Figure 8.10 Wavelet-based persistence analysis of heartbeat interarrival times for a
healthy patient with a Daubechies(5) wavelet. Top panel: data; (a) scale-
to-scale wavelet coefficient variance progression; (b) average magnitude
of normalized along-scale correlation between wavelet coefficients.

line that is not completely straight is:

b = (2H + 1)

= 2− (−10)

15− 4

= 1.090 9 (8.41)

from which we derive the Hurst exponent H = 0.0454 5. This implies that the
heartbeat inter-arrival times are almost blue noise, i.e., highly antipersistent. Differ-
ently stated, the human heart self-reverses or corrects itself (almost) immediately.



Multiresolution analysis of local risk 255

It is an extremely efficient pump. Notice, however, that the slope of the dyadic
plot line is not strictly straight and thus the Hurst exponent is not strictly homoge-
neous, in particular around scales a = 26 = 64 seconds, or close to one minute,
and a = 27 = 128 seconds, or close to two minutes. Panel (b) shows again the
average magnitude of the normalized along-scale empirical correlation

ρ
m,m
n,n−l =

√
E{di,ndj,m} (8.42)

=



=0.125 for l = 1

=0.04 for l = 2 and

<0.01 for l > 2

(8.43)

This shows that there is virtually no serial correlation between the wavelet
resonance coefficients although they clearly scale.

8.3.2.2 Scalegram of Dow Jones Industrial Average

Figure 8.11 shows the computation of the homogeneous Hurst exponent for 4,096
weekly DJIA data as follows. The time seriesX(t) in the top panel is analyzed using
a Daubechies(5) wavelet basis and MRA tiling. In panel (a) the log2[Var{dj,n}] is
plotted versus the scale j = m. Consequently, the value of the slope of this (almost
straight) line is:

b = (2H + 1)

= 24− 10

11− 4

= 2 (8.44)

from which we derive the Hurst exponentH = 0.5. This implies that the difference
operator exponent d = H − 0.5 = 0 for the price increments �X(t) = ε(t)

(cf. Chapter 4). Thus, the weekly DJIA series X(t) follows a pure Random Walk
(cf. Chapter 2). Panel (b) shows the average magnitude of the normalized along-
scale empirical correlation between the wavelet resonance coefficients:

ρ
m,m
n,n−l =

√
E{di,ndj,m} (8.45)

=



=0.08 for l = 1

=0.03 for l = 2 and

<0.03 for l > 2

(8.46)

This shows again that there is virtually no serial correlation between the wavelet
resonance coefficients.
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